Solutions to the Practice Problems on Required Mathematical Skills

1. Simplify each of the following expressions as much as possible:

(a)
$$-pH$$

(b) $\log_{10}(10x^2) = \log_{10} 10 + \log_{10} x^2 = 1 + 2\log_{10} x$
(c) x
(d) $\frac{(x+1)^2}{x^2+1}$ doesn't simplify.

- 2. Solve the following equations for x:
 - (a) Rewrite this equation to the form $13x^2 + 2x 44 = 0$. This is now a quadratic equation with solutions

$$x = \frac{-2 \pm \sqrt{2^2 - 4(13)(-44)}}{2(13)} = \frac{-2 \pm \sqrt{2292}}{26}$$

If you run these numbers through your calculator, you get x = 1.7644 or x = -1.9183. Note that you should try to report answers to a reasonable number of digits and that your results must be rounded correctly. Also, if you have a quadratic equation solver programmed into your calculator, you are more than welcome to use it on a test. Just tell me that you did so I know where your numbers are coming from. The same thing goes for any other type of equation you may have to solve.

- (b) Rewrite this to the form $-13.2 = \log_{10} x$. Now take $10^{-13.2} = 10^{\log_{10} x} = x$. Therefore $x = 6.3096 \times 10^{-14}$. Note that the calculator notation (6.3095E-14) is *unacceptable*.
- (c) Take a natural logarithm of both sides: $\ln 13.2 = \ln e^{x^2} = x^2$. The answer falls out immediately: $x = \sqrt{\ln 13.2} = 1.6063$.
- (d) Cross-multiply and rearrange:

$$4.3(x+1) = x.$$

$$\therefore 3.3x = -4.3.$$

$$\therefore x = -1.3030.$$

(e) Again, start by cross-multiplying and rearranging:

$$a(x+c) = 2x^{2} + b.$$

$$\therefore 2x^{2} - ax + b - ac = 0.$$

$$\therefore x = \frac{a \pm \sqrt{a^{2} - 4(2)(b - ac)}}{2(2)}$$

$$= \frac{1}{4} \left(a \pm \sqrt{a^{2} - 8(b - ac)} \right).$$