Solutions to the Practice Problems on the Relationship between Kinetics and Equilibrium

1. The rate of production of C (for instance) is

$$\frac{d[C]}{dt} = k_1[A][B] - k_{-1}[C].$$

At equilibrium, d[C]/dt = 0 so

$$k_1[A][B] = k_{-1}[C].$$

$$\therefore \frac{[C]}{[A][B]} = \frac{k_1}{k_{-1}} = K.$$

$$\therefore k_{-1} = \frac{k_1}{K} = \frac{1.4 \times 10^{-3} L \,\text{mol}^{-1} \text{s}^{-1}}{1.2 \times 10^{15} L / \text{mol}} = 1.2 \times 10^{-18} \,\text{s}^{-1}.$$

- 2. (a) A and B are reactants. C is an intermediate. D is a product.
 - (b) $2A + B \rightleftharpoons D$

(c)

$$\frac{d[A]}{dt} = -k_1[A][B] + k_{-1}[C] - k_2[A][C] + k_{-2}[D]
\frac{d[B]}{dt} = -k_1[A][B] + k_{-1}[C]
\frac{d[C]}{dt} = k_1[A][B] - k_{-1}[C] - k_2[A][C] + k_{-2}[D]
\frac{d[D]}{dt} = k_2[A][C] - k_{-2}[D]$$

(d) At equilibrium, all of the rates vanish. In particular, $\frac{d[B]}{dt} = \frac{d[D]}{dt} = 0$. From $\frac{d[B]}{dt} = 0$, we get

$$k_1[A][B] = k_{-1}[C]$$

from which it follows that

$$\frac{[C]}{[A][B]} = \frac{k_1}{k_{-1}}.$$
 (1)

From $\frac{d[D]}{dt} = 0$, we get the additional condition

$$k_2[A][C] = k_{-2}[D]$$

or $\frac{[D]}{[A][C]} = \frac{k_2}{k_{-2}}$. (2)

The equilibrium constant for the overall reaction is

$$K = \frac{[D]}{[A]^2[B]}.$$

If we multiply equations 1 and 2 together, we get

$$\frac{[C]}{[A][B]} \frac{[D]}{[A][C]} = \frac{[D]}{[A]^2[B]} = \frac{k_1}{k_{-1}} \frac{k_2}{k_{-2}}.$$

$$\therefore K = \frac{k_1 k_2}{k_{-1} k_{-2}}.$$