Chemistry 2000 review problems on organic chemistry, acids and bases

1. The following molecule is an allene derivative:

- (a) Is this molecular chiral?
- (b) Predict the products of the addition reaction with
 - i. exactly one equivalent of HBr, or
 - ii. excess HBr.
- 2. (a) Calculate the pH of a $6.3 \times 10^{-4} \text{ mol/L}$ aqueous sodium sulfite (Na₂SO₃) solution at 25 °C. The K_b of the sulfite ion is 1.6×10^{-7} .
 - (b) I only gave you one K_b , but clearly the sulfite ion can be protonated twice. Why don't we need to consider the second protonation?
- 3. (a) $15 \text{ g of sodium dihydrogen phosphate (NaH₂PO₄, molar mass <math>119.98 \text{ g/mol})$ is dissolved in 150 mL of water. What is the pH of the solution? The p K_a of the first proton of the dihydrogen phosphate anion is 7.2 at 298.15 K.
 - (b) The dihydrogen phosphate anion $(H_2PO_4^-)$ can act either as an acid or a base. The question above makes at least two assumptions:
 - Dihydrogen phosphate will act as an acid rather than a base.
 - The dissociation of a second proton is not significant.

How could you justify these two assumptions? If you would need additional data to do so, indicate what data you would need.

- 4. Will an acid-base reaction occur between sulfite (SO_3^{2-}) and the dihydrogen phosphate ion $(H_2PO_4^-)$ in aqueous solution at 25 °C? You will need data from the previous problems to solve this one.
- 5. Which of the following pair of acids would you expect to be the stronger acid, and why?

