Chemistry 1000 Lecture 26: Crystal field theory

Marc R. Roussel

November 6, 2018

Marc R. Roussel

The d orbitals

Crystal field theory

- In an isolated atom or ion, the d orbitals are all degenerate, i.e. they have identical orbital energies.
- When we add ligands however, the spherical symmetry of the atom is broken, and the d orbitals end up having different energies.
- The qualitative appearance of the energy level diagram depends on the structure of the complex (octahedral vs square planar vs...).
- The relative size of the energy level separation depends on the ligand, i.e. some ligands reproducibly create larger separations than others.

Octahedral crystal fields

- In an octahedral complex, the d_{x²-y²} and d_{z²} orbitals point directly at some of the ligands while the d_{xy}, d_{xz} and d_{yz} do not.
- This enhances the repulsion between electrons in a metal $d_{x^2-y^2}$ or d_{z^2} orbital and the donated electron pair from the ligand, raising the energy of these metal orbitals relative to the other three. Thus:

• $\Delta = crystal-field splitting$

Crystal-field splitting

Note: Sometimes we write Δ_o instead of Δ to differentiate the crystal-field splitting in an octahedral field from the splitting in a field of some other symmetry (e.g. Δ_t for tetrahedral).

Electron configurations

• At first, just follow Hund's rule, e.g. for a d^3 configuration,

• *P* = pairing energy = extra electron-electron repulsion energy required to put a second electron into a d orbital + loss of favorable spin alignment

• For d⁴, two possibilities:

• Experimentally, we can tell these apart using the paramagnetic effect, which should be twice as large for the high-spin d⁴ than for the low-spin d⁴ configuration.

Spectrochemical series

• We can order ligands by the size of Δ they produce.

 \implies spectrochemical series

- A ligand that produces a large Δ is a strong-field ligand.
- A ligand that produces a small Δ is a weak-field ligand.

(strong) $CO \approx CN^- > phen > en > NH_3 > EDTA^{4-} > H_2O > ox^{2-} \approx O^{2-} > OH^- > F^- > CI^- > Br^- > I^-$ (weak)

Example: Iron(II) complexes

- Electronic configuration of Fe^2+: [Ar]3d⁶
- $[Fe(H_2O)_6]^{2+}$ is high spin:

• From the spectrochemical series, we know that all the ligands after H_2O in octahedral complexes with Fe^{2+} will also produce high-spin complexes, e.g. $[Fe(OH)_6]^{4-}$ is high spin.

$$\begin{array}{l} ({\rm strong}) \; {\rm CO} \approx {\rm CN}^- > {\rm phen} > {\rm en} > {\rm NH}_3 > {\rm EDTA}^{4-} > {\rm H}_2 {\rm O} > \\ {\rm ox}^{2-} \approx {\rm O}^{2-} > {\rm OH}^- > {\rm F}^- > {\rm CI}^- > {\rm Br}^- > {\rm I}^- \; ({\rm weak}) \end{array}$$

Example: Iron(II) complexes (continued)

 \bullet Somewhere between CN $^-$ and H_2O, we switch from low to high spin.

$$\begin{array}{l} ({\rm strong}) \; {\rm CO} \approx {\rm CN}^- > {\rm phen} > {\rm en} > {\rm NH}_3 > {\rm EDTA}^{4-} > {\rm H}_2 {\rm O} > \\ {\rm ox}^{2-} \approx {\rm O}^{2-} > {\rm OH}^- > {\rm F}^- > {\rm CI}^- > {\rm Br}^- > {\rm I}^- \; ({\rm weak}) \end{array}$$

Color

- Typically in the transition metals, Δ is in the range of energies of visible photons.
- Absorption:

 Colored compounds absorb light in the visible range. The absorbed light is subtracted from the incident light: White light Absorption spectrum Transmitted light
Absorption spectrum Transmitted light

λ

λ

λ

Example: copper sulfate

 $CuSO_4 \cdot 5\,H_2O$

 $CuSO_4$ solution vs blank

Example: copper sulfate

Visible spectrum

The color wheel

- Colors in opposite sectors are complementary.
- Example: a material that absorbs strongly in the red will appear green.

Absorption spectroscopy

Simple single-beam absorption spectrometer

Absorption spectroscopy

Dual-beam absorption spectrometer

Example: Cobalt(III) complexes

- The $[Co(H_2O)_6]^{3+}$ ion is green. From the color wheel, this corresponds to absorption in the red.
- The $[Co(NH_3)_6]^{3+}$ ion is yellow-orange. It absorbs in the blue-violet.
- The $[Co(CN)_6]^{3-}$ ion is pale yellow. It absorbs mostly in the ultraviolet, with an absorption tail in the violet.
- Note that these results are consistent with the spectrochemical series: The d level splitting is ordered $H_2O\,<\,NH_3\,<\,CN^-.$

Examples: Colorless ions

• Titanium(IV) ion $\implies d^0$ configuration

• Zinc(II) ion $\Longrightarrow d^{10}$ configuration