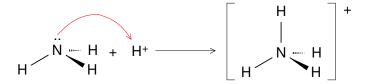
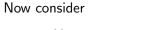
Chemistry 1000 Lecture 20: Lewis acids and bases

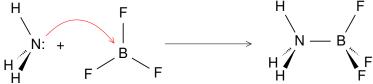
Marc R. Roussel


October 15, 2018

Historical ideas about acids and bases

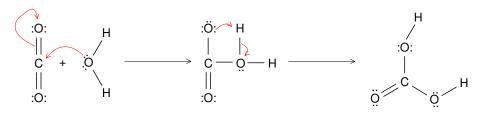
Arrhenius theory: based on the behavior of acids and bases in water Arrhenius acid: dissociates in water, producing H⁺ Examples: HCI, CH₃COOH Arrhenius base: dissociates in water, producing OH⁻ Examples: NaOH, Ba(OH)₂ Brønsted theory: puts the emphasis on proton transfer Brønsted acid: proton donor Examples: HCl, CH₃COOH, H₂O Brønsted base: proton acceptor Examples: OH⁻, NH₃, H₂O


Ammonia as a base


Ammonia is a Brønsted base:

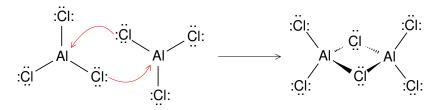
Thinking of ammonia as a Brønsted base, we would say that it is accepting a proton.

An alternative viewpoint is that ammonia is donating an electron pair to H^+ .



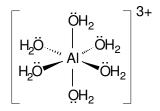
This reaction and the reaction of NH_3 with H^+ are clearly of the same kind, even though one is a Brønsted acid-base reaction, and the other isn't.

Lewis acid: electron pair acceptor


Lewis base: electron pair donor

CO₂ as a Lewis acid

Note that this Lewis acid-base reaction makes CO_2 into the Brønsted acid $\mathsf{H}_2\mathsf{CO}_3.$

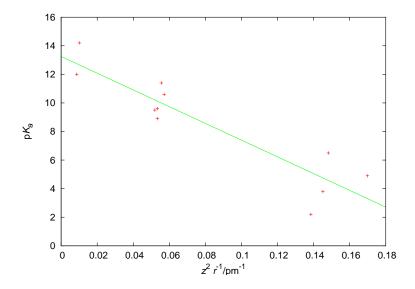

In the gas phase, many group 13 metal halides exist as Lewis dimers:

Metal ions as Lewis acids

Metal ions often act as Lewis acids.

Example: hydrated AI^{3+} ion

 $[AI(H_2O)_6]^{3+}$ is a Brønsted acid:


$$[\text{AI}(\text{H}_2\text{O})_6]^{3+}_{(\text{aq})} + \text{H}_2\text{O}_{(\text{I})} \rightarrow [\text{AI}(\text{H}_2\text{O})_5(\text{OH})]^{2+}_{(\text{aq})} + \text{H}_3\text{O}^+_{(\text{aq})}$$

 $pK_a = 4.85$

Factors that affect the acidity of aqua ions

- Acidity of aqua ions is due to the weakening of bonds between O and H when a new bond is formed between O and a metal ion.
- What makes metal-water bonds strong?
 - lon charge (z): Lewis acidity is based on attraction of (in this case) an ion for one lone pair on the oxygen atom.
 - All other things being equal, we might think that the force of attraction increases with *z*.
 - However, the polarization of the O-H bond also increases with *z*, so the force between the ion and water molecule increases as *z*².
 - lon radius (*r*): A smaller radius increases the electrostatic potential energy of the bond.

Overall: The acidity should increase with z^2/r .

Consequence: lons with small z and/or relatively large r have aqua ions with little or no acidity in water (e.g. alkali metal ions). Additional consideration: All other things being equal, more electronegative metals tend to give more acidic complexes. Why?

Acidity and solubility

- We can sometimes think of the dissolution of ionic compounds in terms of acid-base concepts, at least for simple ionic compounds.
- Take, e.g. oxides, i.e. compounds of O²⁻ with metal ions.
 We can think of these compounds as products of the reaction of a Lewis acidic metal ion with the Lewis basic oxide ion.
- The oxide ion is a strong Lewis base.
- If the metal ion is a strong Lewis acid, then the product is hard to break up and will not dissolve.
- Examples:
 - Na⁺ is a very weak Lewis acid so its compounds (including oxides) are very soluble.
 - ${\sf Ti}^{4+}$ is a very strong Lewis acid, so its oxide (in particular) is insoluble in water.

Acidity and solubility (continued)

- Solubility can often be modulated by varying the pH.
- Al³⁺ is an interesting case:
 - $\bullet\,$ Near neutral pH, AI_2O_3 is insoluble because AI^{3+} is a very strong Lewis acid.
 - At low pH, the oxide ion is removed by H^+ , and AI^{3+} is obtained in solution (as the solvated ion).
 - At high pH, the oxide is converted to $[AI(OH)_4]^-$, which makes it soluble.

Summary of Lewis acids and bases

• Categories of Lewis acids:

Metal cations and H⁺ Metal-deficient species such as BX_3 and BeX_2 Molecules containing double or triple bonds between atoms with very different electronegativities such as CO_2 and SO_3

• Lewis bases have lone pairs, as in NH₃.