Chemistry 1000 Lecture 19: Hydrogen

Marc R. Roussel

October 15, 2018

The nonmetallic (?) group 1 element

• Hydrogen is usually placed on periodic tables in group 1 due to its single (valence) electron.

- Diatomic gas at room temperature
- Electronegativity: 2.1
- \bullet Electrical resistivity of liquid hydrogen over 2200 K and above 140 GPa: $5\times 10^{-6}\,\Omega$ m

Reactivity of H₂

- The H-H bond is very short \iff strong.
- The strong H-H bond means that H₂ is not very reactive.
 - Reaction with O₂ requires a spark (free radicals) for initiation.
 Contrast: reaction with alkali metals
 - Reaction with N₂ requires heat and pressure and a catalyst.

Hydrides

Binary hydrogen compounds (compounds of H and one other element) are called hydrides.

Types of hydrides:

Covalent hydrides: e.g. H₂O, CH₄

Some covalent hydrides (notably H_2O) display significant ionic character, as evidenced by their dissociation into ions in water.

Ionic hydrides: e.g. NaH, CaH₂

For H and Na, $\Delta \chi = 2.1 - 0.9 = 1.2$. We would normally predict this compound to be covalent, but it behaves as if it's an ionic compound of Na⁺ and H⁻.

Metallic hydrides: e.g. palladium hydride

Preparation of hydrogen

Lab-scale processes

Reaction of a metal with a non-oxidizing acid:

$$\mathsf{M}_{(\mathsf{s})} + n\mathsf{H}^+_{(\mathsf{aq})} o \mathsf{M}^{n+}_{(\mathsf{aq})} + rac{n}{2}\mathsf{H}_{2(\mathsf{g})}$$

Reaction of an active metal (group 1 or 2) with water:

$$M_{(s)} + H_2O_{(I)} \rightarrow M_{(aq)}^+ + OH_{(aq)}^- + \frac{1}{2}H_{2(g)}$$

Reaction of Al with base:

$$\text{AI}_{(s)} + \text{OH}_{(aq)}^- + 3\text{H}_2\text{O}_{(I)} \rightarrow [\text{AI}(\text{OH})_4]_{(aq)}^- + \tfrac{3}{2}\text{H}_{2(g)}$$

Electrolysis of water: $H_2O_{(I)} \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$

Preparation of hydrogen

Industrial processes

Steam reforming of natural gas:
$$CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + 3H_{2(g)}$$

Coal gasification:
$$C_{(s)} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)}$$

Water gas shift reaction:
$$CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$$

Typically used with steam reforming or coal gasification

Electrolysis of water: May become a useful source of hydrogen if cheap/environmentally benign sources of electricity can be found.

Covalent hydrides

- Wide range of properties: some almost perfectly covalent (e.g. CH₄), some with substantial ionic character (e.g. HF)
- Because H sits right in the middle of the electronegativity scale, it can carry a partial positive charge (as in H_2O), essentially no charge (as in PH_3), or a partial negative charge (as in SiH_4).
- Ionic character and counterion hydration effects lead to Brønsted acidity, e.g.

$$\mathsf{HF}_{(\mathsf{aq})} + \mathsf{H}_2 \mathsf{O}_{(\mathsf{I})} \rightleftharpoons \mathsf{F}_{(\mathsf{aq})}^- + \mathsf{H}_3 \mathsf{O}_{(\mathsf{aq})}^+$$

Brønsted acid-base theory

Brønsted acid: proton donor

Brønsted base: proton acceptor

Strong acid: dissociates completely in water

Common strong acids: HCl, HBr, HI, HNO₃, HClO₄, HClO₃, H₂SO₄ (first proton)

Strong base: ionizes completely in water

Common strong bases: alkali metal hydroxides, alkaline earth metal hydroxides (except Be(OH)₂)

Strength of acids

• K_a is the equilibrium constant for the dissociation of an acid:

$$\mathsf{HA}_{(\mathsf{aq})} + \mathsf{H}_2 \mathsf{O}_{(\mathsf{I})} \rightleftharpoons \mathsf{A}^-(\mathsf{aq}) + \mathsf{H}_3 \mathsf{O}_{(\mathsf{aq})}^+ \qquad \qquad \mathcal{K}_a = \frac{[\mathsf{A}^-][\mathsf{H}_3 \mathsf{O}^+]}{[\mathsf{HA}]}$$

• K_a range over several orders of magnitude, so it's convenient to use a logarithmic scale:

$$pK_a = -\log_{10}K_a$$

• Stronger acid \Longrightarrow smaller p K_a

$$\begin{array}{cccccc} & \text{HCI} & \text{HF} & \text{HOCI} & \text{HCN} \\ \text{p}\textit{K}_a: & <0 & 3.18 & 7.54 & 9.21 \\ \text{stronger} & & \text{weaker} \end{array}$$

Ranking strong acids

Use one strong acid as a solvent for another.

If the reaction $HA + HB \rightleftharpoons A^- + H_2B^+$ occurs, then HA is a stronger acid than HB

Hydrohalic acids

• Ranked in order of strength:

Ionic radii:

Ionic hydrides

- Group 1 and 2 metals (except Be and Mg) form ionic hydrides involving the H⁻ ion.
- H[−] is isoelectronic with He: 1s².
 ⇒ pseudo-halide ion?
- Made by direct reaction of the metal with hydrogen, e.g.

$$\begin{split} \mathsf{Na}_{(\mathsf{s})} + \frac{1}{2} \mathsf{H}_{2(\mathsf{g})} &\to \mathsf{NaH}_{(\mathsf{s})} \\ \mathsf{Ca}_{(\mathsf{s})} + \mathsf{H}_{2(\mathsf{g})} &\to \mathsf{CaH}_{2(\mathsf{s})} \end{split}$$

• The hydride ion is an extremely powerful base:

$$\begin{split} &H_{(aq)}^{-} + H_{2}O_{(I)} \rightarrow H_{2(g)} + OH_{(aq)}^{-} \\ &H_{(sol)}^{-} + CH_{3}OH_{(I)} \rightarrow CH_{3}O_{(sol)}^{-} + H_{2(g)} \end{split}$$

Metallic hydrides

- Typically non-stoichiometric compounds of a transition metal (or lanthanide or actinide) with hydrogen
- Alternative names: metal hydride, interstitial hydride
- Hydrogen molecules slip into the holes in the metal lattice.
- In some metals, the molecules dissociate, either into hydrogen atoms, or into H⁺ and H⁻.
- Palladium is the champion metallic hydride, absorbing up to 900 times its volume in H₂.
- Proposed as hydrogen storage devices

Types of hydrides

```
Н
                                                                                          He
     Be
                                                                                          Ne
Na
    Mg
                                                                                          Ar
     Ca
                                                                       Ge
Κ
             Sc
                      Τi
                                    Mn
                                          Fe
                                              Co
                                                   Ni
                                                             Zn
                                                                  Ga
                                                                                          Kr
                                                        Cu
                                                                            As
     Sr
              Υ
                                              Rh
                                                                       Sn
                                                                            Sb
Rb
                     Zr
                               Мо
                                    Tc
                                         Ru
                                                   Pd
                                                        Ag
                                                             Cd
                                                                                          Xe
Cs
     Ва
            La-Lu
                     Hf
                          Ta
                               W
                                    Re
                                          Os
                                               lr
                                                   Pt
                                                        Au
                                                             Hg
                                                                  ΤI
                                                                       Pb
                                                                            Bi
                                                                                Ро
                                                                                     Αt
                                                                                          Rn
Fr
     Ra
          Ac, U, Pu
 Ionic
                       Metallic hydrides
                                                                           Covalent
```

hydrides

hydrides