Chemistry 1000 Lecture 7: Hydrogenic orbitals

Marc R. Roussel

September 10, 2018

Heisenberg uncertainty principle

Fundamental limitation to simultaneous measurements of position and momentum:

$$\Delta x \Delta p_x \geq \frac{1}{2} \hbar$$

with
$$\hbar = \frac{h}{2\pi}$$
.

- Uncertainty is, roughly, the experimental precision of the measurement.
- Position and momentum can't simultaneously both be known to arbitrary accuracy.

Why not?

- Suppose that we want to locate an object in a microscope.
 - Photons reflect (or refract) from the sample.
 - Photons have momentum so they give the object a "kick" (i.e. change the momentum) during interaction with an object.

$$\begin{array}{c} \text{Resolution } \Delta x \sim \lambda \\ \text{Kick } \Delta p_x \sim h/\lambda \end{array} \bigg\} \Delta x \Delta p_x \sim h > \tfrac{h}{4\pi}$$

Example: Suppose that we use X-rays to determine the position of an electron to within 10^{-10} m (diameter of a hydrogen atom). Since

$$\Delta x \Delta p_x \geq \frac{1}{2}\hbar$$
, we have

$$\Delta p_x \ge \frac{\hbar}{2\Delta x} = 5 \times 10^{-25} \,\mathrm{kg}\,\mathrm{m}\,\mathrm{s}^{-1},$$

or

$$\Delta v \geq rac{\Delta p_x}{m_e} = 6 imes 10^5 \, \mathrm{m/s}.$$

Important consequence:

- Bohr theory has orbits of fixed r, i.e. $\Delta r = 0$.
- The radial momentum component would then have to have infinite uncertainty.

uncertainty.
$$(\Delta p_r = \frac{\hbar}{2\Delta r})$$

- Infinite uncertainty in momentum not possible (sorry, Douglas Adams)
 - ... Bohr orbits not possible

Wavefunctions in modern quantum mechanics

- ullet Quantum systems are described by a wavefunction ψ .
- Square of wavefunction = probability density

 $\psi^2 dV$ = probability of finding the particle in a small volume dV.

Orbital: one-electron wavefunction

Hydrogenic orbitals

- Depend on three quantum numbers
 - n: principal quantum number
 - Total energy of atom depends on *n* (as in Bohr theory):

$$E_n = -\frac{Z^2}{n^2} R_H$$

- ℓ: orbital angular momentum quantum number
 - Size of orbital angular momentum vector (L) depends on ℓ:

$$L^2 = \ell(\ell+1)\hbar^2$$

- m_{ℓ} : magnetic quantum number
 - z component of **L** depends on m_ℓ :

$$L_z = m_\ell \hbar$$

Rules for hydrogenic quantum numbers

- n is a positive integer (1,2,3,...)
- ullet can only take values between 0 and n-1

ullet m_ℓ can only take values between $-\ell$ and ℓ

The orbitals are therefore the following:

n	ℓ	subshell	m_ℓ	number of orbitals
1	0	1s	0	1
2	0	2s	0	1
2	1	2p	-1, 0 or 1	3
3	0	3s	0	1
3	1	3р	-1, 0 or 1	3
3	2	3d	-2, -1 , 0 , 1 or 2	5
:				

Degeneracy

- All orbitals corresponding to the same value of n have the same energy.
 - Different orbitals with the same energy are said to be degenerate.
- Example: The 2s, $2p_{-1}$, $2p_0$ and $2p_1$ orbitals all correspond to n=2 and are degenerate in hydrogenic atoms.
- The degeneracy between orbitals can be lifted by external fields. Example: A magnetic field removes the degeneracy between orbitals with different values of m_{ℓ} (Zeeman effect).

Real-valued orbitals

- The orbitals corresponding to the quantum numbers (n, ℓ, m_{ℓ}) are complex-valued, i.e. they involve $i = \sqrt{-1}$.
- In many cases, there is no distinguished z axis, and therefore no particular meaning to the quantum number m_{ℓ} .
- We can replace the original set of orbitals with ones corresponding to the same values of n and ℓ (so same energy and angular momentum size), but that don't correspond to any particular value of m_{ℓ} , and that are real-valued.

n = 1

Marc R. Roussel Hydrogenic orbitals September 10, 2018 11 / 24

 $n = 2, \ \ell = 0$

 $n = 2, \ \ell = 1$

Marc R. Roussel

 $n = 3, \ \ell = 0$

 $n = 3, \ \ell = 1$

Marc R. Roussel

n = 3, $\ell = 2$

Wavefunctions have a phase

• The wavefunction has a phase, i.e. a sign.

• The sign changes at nodal surfaces.

• Diagrammatically, we represent the phase using color.

1s orbital

2s orbital

 $2p_z$ orbital

3s orbital

 $3p_z$ orbital

 $3d_{x^2-y^2}$ orbital

Marc R. Roussel Hydrogenic orbitals September 10, 2018 23 / 24

 $3d_{7^2}$ orbital

