Chemistry 1000 Lecture 4:
Kinetics of radioactive decay

Marc R. Roussel

September 3, 2018
Measuring radioactivity

- We can detect the radiation produced by a sample and therefore count the number of decay events.

 Example: one beta particle is produced in each beta decay, so if we count the number of beta particles emitted, we have a direct measurement of the number of decays that occurred in a given time span.

- Radioactivity (A) is measured in becquerel (Bq).

 \[
 1 \text{ Bq} = 1 \text{ decay/s}
 \]

 \[
 A = \frac{\text{decays}}{\text{time}} = -\frac{\Delta N}{\Delta t}
 \]

 ΔN = change in the number of radioactive atoms in time Δt

- Older unit: curie (Ci)

 \[
 1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq} \]
Geiger counter: Ionizing radiation (alpha, beta, gamma) ionizes a gas in a tube, making it conductive. This allows the gas to carry a current for a very short period of time. When connected to a speaker, a Geiger counter produces a click for every radioactive event.

Scintillation counter: Some materials (some crystalline materials like CsI, some plastics, some organic liquids, . . .) fluoresce briefly when ionized. The flashes of fluorescence can be counted.
Rate law

- A is a rate, i.e. an amount of change over time.
- Side note: We should really write A as a derivative: $A = -\frac{dN}{dt}$.
- A rate law is a relationship between a rate of change and the number or concentrations of chemical species in the system.
- Radioactive decay obeys a first-order rate law, meaning that the rate (A) is directly proportional to the number of reactant (radionuclide) atoms/molecules at any given time:

$$A = kN$$

k is called a rate constant or specific activity.

Units of A: of k:
First idea: We could just write \(k = A/N \) or plot \(A \) vs \(N \).

Problem: Both \(A \) and \(N \) depend on time, and we need simultaneous values of these variables. We can measure \(A \) fairly easily, but to get \(N \) we need mass spectrometry. We can get both “simultaneously” only for very slow decay processes.
Better approach: Use calculus!

Derivation (for those of you with a bit of calculus):

\[-A = \frac{dN}{dt} = -kN\]

\[\therefore \frac{dN}{N} = -k \, dt\]

\[\therefore \int_{N_0}^{N} \frac{dN}{N} = -k \int_{0}^{t} dt\]

\[\therefore \ln N \bigg|_{N_0}^{N} = -k \left. t \right|_{0}^{t}\]

\[\therefore \ln N - \ln N_0 = -k(t - 0)\]

\[\therefore \ln \left(\frac{N}{N_0} \right) = -kt\]

\[\therefore \frac{N}{N_0} = e^{-kt}\]

\[\therefore N = N_0 e^{-kt}\]
Result:

\[N = N_0 e^{-kt} \] \hspace{1cm} (1)

where \(N_0 \) is the initial number of radioactive atoms, and \(e \) is Napier’s number.

On your calculator, the function \(e^x \) might be labeled as either \(e^x \) or \(\text{exp} \).

Note 1: Equation (1) shows that \(N \) decays \textit{exponentially}.

Note 2: Since \(A \propto N \), \(A = A_0 e^{-kt} \).

We can therefore work with the easily measured radioactivity instead of \(N \).
Exponential decay

Note: No easy, accurate way to get k from this graph.
Mathematical interlude: the exponential function and natural logarithm

- e^x and $\ln x$ are inverse functions, i.e.

 \[e^{\ln x} = x = \ln(e^x) \]

- $\ln(ab) = \ln a + \ln b$

- $\ln(a/b) = \ln a - \ln b$

- $\ln x = -\ln(1/x)$
Example: ^{35}S decay

^{35}S is a beta emitter. In one experiment, the following radioactivity measurements were obtained: $A = 4280\text{ dpm}$ at $t = 0$, and $A = 3798\text{ dpm}$ at $t = 15\text{ d}$. Find k.

Note: dpm = disintegrations per minute

Answer: $k = 7.965 \times 10^{-3}\text{ d}^{-1}$

What if we had two points, both at times different from zero?

- Physical laws do not depend on what point in time we arbitrarily label zero.
- Shift the time origin to the earlier of the two times.
- In other words, use Δt instead of t.
Half-life

\[\frac{A}{A_0} = e^{-kt} \]

- Note that the fraction by which \(A \) decreases in a fixed time \(t \) is independent of \(A_0 \).
- It should take the same amount of time to go from (e.g.) 1000 Bq to 500 Bq as it does to go from 200 Bq to 100 Bq.
- The time it takes for the number of radioactive atoms to be reduced by half is called the half-life, denoted \(t_{1/2} \).
Half-life (continued)

A sequence of horizontal lines labeled $A_0/16$, $A_0/8$, $A_0/4$, and $A_0/2$ decreases exponentially as t increases by $t_{1/2}$ intervals. The graph shows the decay of radioactive material over time.
At \(t = t_{1/2} \), \(\frac{A}{A_0} = \frac{1}{2} \).

\[
\frac{A}{A_0} = e^{-kt}
\]
\[
\frac{1}{2} = e^{-kt_{1/2}}
\]
\[
\therefore \ln \left(\frac{1}{2} \right) = -kt_{1/2}
\]
\[
\therefore -\ln 2 = -kt_{1/2}
\]
\[
\therefore t_{1/2} = \frac{\ln 2}{k}
\]
Two equivalent formulas

\[A = A_0 e^{-kt} \]

\[A = A_0 \left(\frac{1}{2} \right)^{t/t_{1/2}} \]

(The proof is elementary, but involves the change-of-base formula.)
Example: half-life of ^{35}S

We had previously found $k = 8.0 \times 10^{-3} \text{d}^{-1}$.

\[
t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{8.0 \times 10^{-3} \text{d}^{-1}} = 87 \text{d}
\]
Why do we care about the half-life?

- Radioisotopes with long half-lives will be radioactive for a long time and pose a disposal problem.
- In medical imaging, we want radioisotopes with half-lives that are long enough for the imaging to be completed, but short enough not to become a long-term health hazard to the patient and his/her friends and relatives.
- Radioactive dating
14C dating

- Percentage of 14C in atmosphere fixed by a balance of its rate of production by cosmic-ray neutron bombardment and its rate of decay:

 $^{14}_7\text{N} + {}^0_0\text{n} \rightarrow ^{14}_6\text{C} + ^1_1\text{H}$

 $^{14}_6\text{C} \rightarrow ^{14}_7\text{N} + ^0_1\beta$

- Plants make sugars from atmospheric CO$_2$, so their percentage 14C is the same as in the atmosphere.

- Animals eat plants or other animals, so they too have the same percentage 14C as the atmosphere.

- At natural abundance, 14C is responsible for 0.255 Bq of radioactivity per gram of total carbon.

- Half-life of 14C: 5730 y
Example

A wooden tool has a radioactivity of 0.195 Bq per gram of carbon. How old is it?

\[t = \frac{1}{k} \ln \left(\frac{A_0}{A} \right) \]

(Derive)

\[k = \frac{\ln 2}{t_{1/2}} \]

\[= \frac{\ln 2}{5730 \text{ y}} \]

\[= 1.210 \times 10^{-4} \text{ y}^{-1} \]

\[t = \frac{1}{1.210 \times 10^{-4} \text{ y}^{-1}} \ln \left(\frac{0.255 \text{ Bq}}{0.195 \text{ Bq}} \right) \]

\[= 2218 \text{ y} \]
Choosing an isotope

- All radioisotope dating methods are based on measuring either the radiation (as in 14C dating) or the relative amounts of isotopes that are part of a decay chain.

- Eventually, the amount of a radioisotope drops to negligible levels. The isotope is not useful for dating items older than the time it takes for this to happen.

- How long this takes depends on
 - half-life
 - initial activity

- If we try to date very young objects, not enough decay has occurred to distinguish the decrease from natural variability in isotopic composition.

- For 14C, the useful range is about 200–60,000 y ($\frac{1}{30}$–10 times the half-life).
Other isotopes used for dating

<table>
<thead>
<tr>
<th>Isotope</th>
<th>(t_{1/2}) (\times 10^n) y</th>
<th>Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{235})U</td>
<td>7.038 \times 10^8 , y</td>
<td>rocks (crosscheck)</td>
</tr>
<tr>
<td>(^{238})U</td>
<td>4.468 \times 10^9 , y</td>
<td>sedimentary deposits (ratio)</td>
</tr>
<tr>
<td>(^{230})Th</td>
<td>75 380 , y</td>
<td></td>
</tr>
<tr>
<td>(^{231})Pa</td>
<td>34 300 , y</td>
<td></td>
</tr>
</tbody>
</table>