

Why does food cost much more today than it did a few years ago?

One reason is that we now use part of our corn crop to produce ethanol, a clean biofuel substitute for gasoline.

Production Possibilities and Opportunity Cost

The production possibilities frontier (PPF) is the boundary between those combinations of goods and services that can be produced and those that cannot.
Another reason is that drought in some parts of the world has decreased global grain production.

We use an economic model-the production possibilities frontier-to learn why ethanol production and drought have increased the cost of producing food.

We also use this model to study how we can expand our production possibilities; how we gain by trading with others; and why the social institutions have evolved.

To illustrate the PPF, we focus on two goods at a time and hold the quantities of all other goods and services constant.

That is, we look at a model economy in which everything remains the same (ceteris paribus) except the two goods we're considering.

Production Possibilities and Opportunity Cost

Production Possibilities

 FrontierFigure 2.1 shows the PPF for two goods: cola and pizza.

Any point on the frontier such as E and any point inside the PPF such as Z are attainable.

Points outside the PPF
 are unattainable

Production Possibilities and Opportunity Cost

Any point inside the frontier, such as Z, is inefficient.

At such a point, it is possible to produce more of one good without producing less of the other good.

At Z, resources are either unemployed or misallocated

Production Possibilities and Opportunity Cost

Tradeoff Along the PPF
Every choice along the PPF involves a tradeoff.

On this PPF, we must give up some cola to get more pizzas or give up some pizzas to get cola.

Production Possibilities and Opportunity Cost

Opportunity Cost
As we move down along the PPF, we produce more pizzas, but the quantity of cola we can produce decreases.

The opportunity cost of a pizza is the cola forgone.

Production Possibilities and Opportunity Cost

In moving from E to F, the quantity of pizzas increases by 1 million.

The quantity of cola decreases by 5 million cans.

The opportunity cost of the fifth 1 million pizzas is 5 million cans of cola.

One of these pizzas costs

Production Possibilities and Opportunity Cost

In moving from F to E, the quantity of cola produced increases by 5 million.

The quantity of pizzas decreases by 1 million.

The opportunity cost of the first 5 million cans of cola is 1 million pizzas.

One of these cans of cola costs $1 / 5$ of a pizza. 5 cans of cola.

Production Possibilities and Opportunity Cost

Note that the opportunity cost of a can of cola is the inverse of the opportunity cost of a pizza.

One pizza costs 5 cans of cola.

One can of cola costs $1 / 5$ of a pizza.

Production Possibilities and Opportunity Cost

Because resources are not equally productive in all activities, the PPF bows outward-is concave.

The outward bow of the PPF means that as the quantity produced of each good increases, so does its opportunity cost.

Using Resources Efficiently

All the points along the PPF are efficient.
To determine which of the alternative efficient quantities to produce, we compare costs and benefits.

The PPF and Marginal Cost

The PPF determines opportunity cost.
The marginal cost of a good or service is the opportunity cost of producing one more unit of it.

Using Resources Efficiently

Figure 2.2 illustrates the marginal cost of pizza.

As we move along the PPF in part (a), the opportunity cost of a pizza increases.

The opportunity cost of producing one more pizza is the margina cost of a pizza

Using Resources Efficiently

In part (b) of Fig. 2.2, the bars illustrate the increasing opportunity cost of pizza.
The black dots and the line MC show the marginal cost of pizza.

The MC curve passes through the centre of each bar.

Using Resources Efficiently

Preferences and Marginal Benefit

Preferences are a description of a person's likes and dislikes.

To describe preferences, economists use the concepts of marginal benefit and the marginal benefit curve.

The marginal benefit of a good or service is the benefit received from consuming one more unit of it.

We measure marginal benefit by the amount that a person is willing to pay for an additional unit of a good or service.

Using Resources Efficiently

It is a general principle that the more we have of any good, the smaller is its marginal benefit and the less we are willing to pay for an additional unit of it.

We call this general principle the principle of decreasing marginal benefit.

The marginal benefit curve shows the relationship between the marginal benefit of a good and the quantity of that good consumed.

Using Resources Efficiently

Figure 2.3 shows a marginal benefit curve.

The curve slopes downward to reflect the principle of decreasing marginal benefit.

At point A, with pizza production at 0.5 million, people are willing to pay 5 cans of cola for a pizza.

Using Resources Efficiently

At point B, with pizza production at 1.5 million, people are willing to pay 4 cans of cola for a pizza.

At point E, with pizza production at 4.5 million, people are willing to pay 1 can of cola for a pizza.

Using Resources Efficiently

Allocative Efficiency

When we cannot produce more of any one good without giving up some other good, we have achieved production efficiency.

We are producing at a point on the PPF.
When we cannot produce more of any one good without giving up some other good that we value more highly, we have achieved allocative efficiency.

We are producing at the point on the PPF that we prefer above all other points.

Using Resources Efficiently

Figure 2.4 illustrates allocative efficiency.

The point of allocative efficiency is the point on the PPF at which marginal benefit equals marginal cost.

This point is determined by the quantity at which the marginal benefit curve intersects the margina cost curve.

(b) Marginal benefit equals marginal cost

Pizzas (millions)

Using Resources Efficiently

If we produce fewer than
2.5 million pizzas,
marginal benefit exceeds marginal cost.

We get more value from our resources by producing more pizzas.
On the PPF at point A, we are producing too much cola, and we are better off moving along the $P P F$ to produce more pizzas.

(b) Marginal benefit equals marginal cost

Using Resources Efficiently

If we produce more than
2.5 million pizzas,
marginal cost exceeds marginal benefit.

We get more value from our resources by producing fewer pizzas.

On the $P P F$ at point C, we are producing too many pizzas, and we are better off moving along the PPF
 to produce fewer pizzas.

(b) Marginal benefit equals marginal cost

Using Resources Efficiently

If we produce exactly 2.5 million pizzas, marginal cost equals marginal benefit.

We cannot get more value from our resources.

On the PPF at point B, we are producing the efficient quantities of cola and pizzas.

(b) Marginal benefit equals marginal cost

Economic Growth

The expansion of production possibilities-and increase in the standard of living-is called economic growth.

Two key factors influence economic growth:

- Technological change
- Capital accumulation

Technological change is the development of new goods and of better ways of producing goods and services.

Capital accumulation is the growth of capital resources, which includes human capital.

Economic Growth

The Cost of Economic Growth
To use resources in research and development and to produce new capital, we must decrease our production of consumption goods and services.

So economic growth is not free.
The opportunity cost of economic growth is less current consumption.

Economic Growth

Figure 2.5 illustrates the tradeoff we face.

We can produce pizzas or pizza ovens along $P P F_{0}$.

By using some resources to produce pizza ovens today, the PPF shifts outward in the future.

Gains from Trade

Comparative Advantage and Absolute Advantage

A person has a comparative advantage in an activity if that person can perform the activity at a lower opportunity cost than anyone else.

A person has an absolute advantage if that person is more productive than others.

Absolute advantage involve comparing productivities while comparative advantage involves comparing opportunity costs.

Let's look at Liz and Joe who operate smoothie bars.

Gains from Trade

Liz's Smoothie Bar

In an hour, Liz can produce 30 smoothies or 30 salads.	TABLE 2	roductio	
	Item	Minutes to produce 1	Quantity per hour
	Smoothies	2	30
Liz's opportunity cost of	Salads	2	30

Liz's opportunity cost of producing 1 salad is 1 smoothie.
Liz's customers buy salads and smoothies in equal number, so she produces 15 smoothies and 15 salads an hour.

Gains from Trade

Joe's Smoothie Bar

In an hour, Joe can produce 6 smoothies or 30 salads.
Joe's opportunity cost of
producing 1 smoothie is 5 salads.

Joe's opportunity cost of producing 1 salad is $1 / 5$ smoothie.

Joe's spend 10 minutes making salads and 50 minutes making smoothies, so he produces 5 smoothies and 5 salads an hour.

Gains from Trade

Liz's Absolute Advantage

Liz is three times as productive as Joe.
Liz can produce 15 smoothies and 15 salads an hour whereas Joe can produce only 5 smoothies and 5 salads an hour.

Liz has an absolute advantage in producing smoothies and salads.

Gains from Trade

Liz's Comparative Advantage

Liz's opportunity cost of a smoothie is 1 salad.
Joe's opportunity cost of a smoothie is 5 salads.
Liz's opportunity cost of a smoothie is less than Joe's.
So Liz has a comparative advantage in producing smoothies.

Gains from Trade

Joe's Comparative Advantage
Joe's opportunity cost of a salad is $1 / 5$ smoothie.
Liz's opportunity cost of a salad is 1 smoothie. Joe's opportunity cost of a salad is less than Liz's.

So Joe has a comparative advantage in producing salads.

Gains from Trade

Achieving Gains from Trade
Liz and Joe produce the good in which they have a comparative advantage:

- Liz produces 30 smoothies and 0 salads.
- Joe produces 30 salads and 0 smoothies.

	- TABLE 2.3 Liz and Joe Gain from Trade			
	(a) Before trade	Liz	Joe	
	Smoothies	15	5	
	Salads	15	5	
	(b) Specialize	Liz	Joe	
	Smoothies	30	0	
	Salads	0	30	
	(c) Trade	Liz	Joe	
	Smoothies	sell 10	buy 10	
	Salads	buy 20	sell 20	
	(d) After trade	liz	Joe	
	Smoothies	20	10	
	Salads	20	10	
	(e) Gains from trade	Liz	Joe	
	Smoothies	+5	+5	
	Salads	+5	+5	

Gains from Trade

Liz and Joe trade:

- Liz sells Joe 10 smoothies and buys 20 salads.
- Joe sells Liz 20 salads and buys 10 smoothies.

After trade:
-Liz has 20 smoothies and 10 salads.

- Joe has 20 smoothies and 10 salads.

(a) Eficro tide		
5 smochios	15	5
Sobdr	15	5
(1) 5 sexidize	Liz	Joe
Smatties	${ }^{30}$	\bigcirc
Solds	,	30
(f) Tode	1 i	Joe
Smother	all 10	bay 10
Slads	bor 20	al120
(1)A Afer trado	ir^{1}	100
$\begin{aligned} & \text { Smaties } \\ & \text { Soldes } \end{aligned}$	${ }_{20}^{20}$	10 10

Gains from Trade

Gains from trade:

- Liz gains 5 smoothies and 5 salads an hour
- Joe gains 5 smoothies and 5 salads an hour

Gains from Trade

Figure 2.6 shows the gains from trade.
Joe initially produces at point A on his PPF.
Liz initially produces at point A on her PPF.

Gains from Trade

Joe's opportunity cost of producing a salad is less than Liz's.
So Joe has a comparative advantage in producing salad.

Gains from Trade

Liz's opportunity cost of producing a smoothie is less than Joe's.

So Liz has a comparative advantage in producing smoothies.

(b)

Gains from Trade

Liz specializes in producing smoothies and produces 30 smoothies an hour at point B on her PPF.

(a) Joe

Gains from Trade

They trade salads for smoothies along the red "Trade line."
The price of a salad is 2 smoothies or the price of a smoothie is $1 / 2$ of a salad.

Gains from Trade

Joe buys smoothies from Liz and moves to point C-a point outside his PPF.

Liz buys salads from Joe and moves to point C-a point outside her PPF.

Gains from Trade

Dynamic Comparative Advantage

Learning-by-doing occurs when a person (or nation) specializes and by repeatedly producing a particular good or service becomes more productive in that activity and lowers its opportunity cost of producing that good over time.

Dynamic comparative advantage occurs when a person (or nation) gains a comparative advantage from learning-by-doing.

Economic Coordination

To reap the gains from trade, the choices of individuals must be coordinated.

To make coordination work, four complimentary social institutions have evolved over the centuries:

- Firms
- Markets
- Property rights
- Money

Economic Coordination

A firm is an economic unit that hires factors of production and organizes those factors to produce and sell goods and services.

A market is any arrangement that enables buyers and sellers to get information and do business with each other.

Property rights are the social arrangements that govern ownership, use, and disposal of resources, goods or services.
Money is any commodity or token that is generally acceptable as a means of payment.

Economic Coordination

Circular Flows

 Through MarketsFigure 2.7 illustrates how households and firms interact in the market economy.
Factors of production and goods and services flow in one direction.

Money flows in the opposite direction.

