KRIPKE I: ALLEGED APPLICATIONS OF THE REFERENTIAL/ATTRIBUTIVE DISTINCTION

I: The De Re/De Dicto Distinction

A: The distinction

1) The number of planets is necessarily odd

 (a) De dicto interpretation: the proposition that the number of planets is odd is a necessary truth – false

 (b) De re interpretation: the actual number of planets (nine) has the property of necessary oddness

2) Jones believes that the richest debutante in Dubuque will marry him

 (a) De dicto interpretation: Jones’ belief has a certain content: that the richest debutante in Dubuque will marry him

 (b) De re interpretation: Jones believes of the girl (who happens to be the richest debutante in Dubuque) that she will marry him

B: The Thesis

The referential/attributive distinction can be identified with or can replace the de re/de dicto distinction – de dicto case should be identified with attributive and that the de re case should be identified with referential

C: The Problem

1) De dicto uses of descriptions cannot be identified with attributive uses

 “It is possible that the present king of France is bald” is true if given a de dicto interpretation yet we are not using the description attributively to refer to the current King

2) Referential uses of descriptions cannot be identified with de re uses
“The police know of Smith’s murderer, whoever he is, that he is murderer” and “The number of planets, whatever it is, is necessarily odd” are cases in which use of descriptions is both de re & attributive.

II: The Small Scope/ Large Scope Distinction [= Narrow Scope/ Wide Scope]

A: The Thesis

The referential/attributive distinction can be identified with or can replace the small scope/large scope distinction.

B: The Problem

No two-fold distinction can replace scope distinctions, because intentional operators can iterated created intermediate scope.

1) The number of planets might have been necessarily even

 (a) ◊□(∃x)(There are exactly x planets and x is even)

 = it might have been necessary that there was an even # of planets (false)

 (b) (∃x)(There are exactly x planets and ◊□(x is even))

 = the actual number of planets (eight) might have been necessarily even (false)

 (c) ◊(∃x)(There are exactly x planets and □(x is even))

 = it might have been the case that the actual number of planets was necessarily even (true)