
Journal of Neuroscience Methods 136 (2004) 77–85

Multivariate receptive field mapping in
marmoset auditory cortex

Artur Luczaka,b, Troy A. Hackettd,e,
Yoshinao Kajikawae, Mark Laubacha,c,∗

a The John B. Pierce Laboratory, New Haven, CT, USA
b Department of Computer Science, Yale University, New Haven, CT, USA

c Department of Neurobiology, Yale School of Medicine, 290 Congress Ave, New Haven, CT 06519, USA
d Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA

e Psychology Department, Vanderbilt University, Nashville, TN, USA

Received 27 October 2003; received in revised form 23 December 2003; accepted 23 December 2003

Abstract

We describe a novel method for estimation of multivariate neuronal receptive fields that is based on least-squares (LS) regression. The method
is shown to account for the relationship between the spike train of a given neuron, the activity of other neurons that are recorded simultaneously,
and a variety of time-varying features of acoustic stimuli, e.g. spectral content, amplitude, and sound source direction. Vocalization-evoked
neuronal responses from the marmoset auditory cortex are used to illustrate the method. Optimal predictions of single-unit activity were
obtained by using the recent-time history of the target neuron and the concurrent activity of other simultaneously recorded neurons (R:
0.82 ± 0.01, ∼67% of variance). Predictions based on ensemble activity alone (R: 0.63 ± 0.18) were equivalent to those based on the
combination of ensemble activity and spectral features of the vocal calls (R: 0.61± 0.24). This result suggests that all information derived
from the spectrogram is embodied in ensemble activity and that there is a high level of redundancy in the marmoset auditory cortex. We
also illustrate that the method allows for quantification of relative and shared contributions of each variable (spike train, spectral feature)
to predictions of neuronal activity and describe a novel “neurolet” transform that arises from the method and that may serve as a tool for
computationally efficient processing of natural sounds.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The auditory cortex encodes spectral components of com-
plex, biologically relevant sounds (Rauschecker et al., 1995;
Recanzone et al., 1999; Wang, 2000) as well as other acous-
tic features such as sound source direction (Kelly et al.,
2003; Middlebrooks et al., 1994, 1998), temporal coherence
(Liang et al., 2002), and intensity (Schreiner et al., 1992).
The response properties of neurons in the auditory cortex are
commonly assessed using methods for spectrotemporal re-
ceptive field (STRF) analysis (e.g.Aertsen and Johannesma,
1981; Escabi and Schreiner, 1999; Sen et al., 2001; Shamma
et al., 1995). The STRF quantifies the frequency tuning of
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neurons as a function of time after the onset of the stimulus.
The most commonly used method for estimating receptive
fields is reverse correlation (e.g.de Boer and Kuyper, 1968;
DeAngelis et al., 1995; Escabi and Schreiner, 1999; Shamma
et al., 1995). This method results in a spike-triggered average
of a windowed spectrogram that approximates the STRF and
quantifies the correlation between neuron activity and sound
frequencies as a function of time (de Ruyter van Stevenick
and Bialek, 1988; Rieke et al., 1997). The reverse correla-
tion method does not correct the STRF for correlation within
a given stimulus. For this reason, the method can be used
only with simple, uncorrelated stimuli, such as white noise
or random tones. Only in limited instances have researchers
been able to design more realistic stimuli that remain suitable
for reverse correlation analysis such as evenly distributed,
rapidly presented random chords (deCharms et al., 1998)
or dynamic ripples (Depireux et al., 2001). To account for
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more realistic stimuli,Theunissen and Doupe (1998)pro-
posed a method that uses a stimulus autocorrelation matrix
and that requires transforming the neuronal responses into
the frequency domain. This latter aspect of the algorithm
may not be suitable for signals with sharp transitions (e.g.
a delta function) such as neuronal spike trains. Moreover,
Willmore and Smyth (2003)pointed out that the method
from Theunissen and Doupe (1998)discards information
about the phase of the stimulus and this is likely to be a
major limitation for analyses of realistic acoustic stimuli.

Auditory neurons are well known to exhibit non-linear re-
sponses to spectrotemporal features of acoustic stimuli (e.g.
Calhoun and Schreiner, 1998). Therefore, the reliance of ex-
isting methods for calculating the STRF on linear transfer
functions and standard Fourier transform (as in the study
by Theunissen and Doupe, 1998) has resulted in relatively
poor performance in predicting neuronal responses. For ex-
ample,Sahani and Linden (2003)calculated that in primary
auditory cortex of rodents, the STRF can account for no
more than 40% of the stimulus-related power. This limita-
tion is also reflected in the low correlation coefficients (R)
between the actual neuronal response and the predicted re-
sponse usually reported for STRF-based analyses (e.g. in
Sen et al., 2001, R was in the range from 0 to 0.7). A new
approach is needed that can address these issues as well
as allow for a wider range of signal attributes to be exam-
ined. In the method described here, we have expanded the
standard STRF approach to allow for the examination of a
wide range of factors that might contribute unique informa-
tion to the activity of neurons in the auditory cortex. This
new method is able to quantify the relative and shared con-
tributions of each factor to predictions of neuronal activity.
By including non-spectral variables (e.g. time after stimu-
lus onset, sound source direction), we are able to improve
predictions on vocalization-evoked neuronal responses over
that provided by traditional STRF analysis.

2. Methods

2.1. Electrophysiology

All procedures were approved by the IACUC at Van-
derbilt University. Neural recordings were obtained in two
anesthetized (ketamine hydrochloride, 10 mg/kg and xy-
lazine, 2 mg/kg; I.M.) marmoset monkeys (Callithrix jac-
chus jacchus) using standard neurophysiological methods.
Recordings were obtained using a multi-channel acqui-
sition system (Tucker-Davis Technologies, Gainesville,
FL), controlled by Brainware software developed by Jan
Schnupp (Tucker-Davis Technologies). Linear electrode
arrays (1× 4 configuration; 1 mm spacing) were con-
structed from polyamide insulated tungsten electrodes
(1.0 M� impedance; 1�m tip; 0.254 mm shaft diameter)
(Micro-Probe, Potomac, MD). The array was advanced by
a microdrive (David Kopf, Tujunga, CA) at an angle per-

pendicular to the pial surface of cortex. Electrode depth
ranged from 750 to 1000�m, targeting responsive neurons
in cortical layer III. Neuronal spike trains were recorded
simultaneously from the four electrodes located in area
AI of auditory cortex (Hackett et al., 2001). Data were
collected from 17 separate penetrations. The recordings
consisted of clearly resolved single-unit and multiple-unit
clusters containing spikes from several neurons that could
not be resolved using standard methods for spike sorting
(i.e. thresholding and PCA). Because some of the units had
very low activity, we selected the 23 units with the highest
firing rates for the analyses described here. The analyses
described in this manuscript were based on peri-stimulus
time histograms with 10 ms bins. Additional analyses were
carried out using bin sizes of 2, 5, and 15 ms bins and
the results obtained were qualitatively and quantitatively
similar to the results described here.

2.2. Acoustic stimuli

Experiments were conducted in a sound-isolating cham-
ber (Industrial Acoustics Corp., New York, NY) located
within the auditory research laboratory at Vanderbilt. Audi-
tory stimuli were presented using Tucker-Davis Technolo-
gies System II hardware and software. Stimuli were cali-
brated using a 1/4 in. microphone system (ACO Pacific, Bel-
mont CA) and SigCal software (Tucker-Davis). In this study,
we analyzed responses to three exemplars of the marmoset
monkey twitter call provided by Wang (Johns Hopkins Uni-
versity). The R.M.S. amplitude of each call was adjusted to
60 dB SPL. Each of the three calls was presented 15 times.
The length of the twitters ranged from 0.8 to 1.7 s (a sample
spectrogram of a twitter is shown inFig. 1).

2.3. Multivariate receptive field model

The linear response function of a neuron can be defined
in matrix notation as:

S × C = R (1)

whereR is the response of a neuron (mean firing rate eval-
uated from peri-stimulus time histogram);C, evaluated re-
sponse function (e.g. STRF), andS, matrix of stimulus fea-
tures, including, e.g. the spectrogram of the sound, the am-
plitude of the sound envelope, the sound source direction,
the derivative of the spectrogram, etc. This is schematically
shown inFig. 1, where each row inS represents one time
window of the stimulus. The least-squares (LS) method was
applied to solve this equation. Details of the LS implemen-
tation are provided inAppendix A.

The coefficients,C, evaluated from the LS model have an
interesting property. If we normalize the variables in theS

matrix (spectrogram, amplitude, etc.) to mean zero and unit
variance, then theC matrix has coefficients in the range of
−1 to 1 and express the relative contribution/importance
of each variable. For example, if a coefficient inC
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corresponding to a stimulus variable inS would have a
value of−0.8 then this variable has a large inhibitory con-
tribution to the neuronal response. This results in a means of
making direct comparisons between different types of vari-
ables that may underlie the relationship between acoustic
stimuli and neuronal activity.

2.4. Preprocessing

Prior to the multivariate receptive field analysis, principal
component analysis (PCA) was used for dimension reduc-
tion. For the monkey calls, PCA reduced the complexity of
log-transformed spectrograms (cf.Theunissen and Doupe,
1998) down to 15% of its original size while preserving
98% of signal variation (i.e. 40 principal components (PCs)
represented a window of a spectrogram with 26 frequency

Fig. 1. Illustration of the multivariate receptive field method. The first
row in the first matrix contains values of stimulusS in the analyzed
time window. This matrix contains the spectrogram, time and temporal
envelope of the sound and can be expanded by adding other variables as
a column vectors.R1–Rm denotes the neuronal response atm times. The
LS model calculates the response function coefficientsC1–Cn which can
be interpreted as the multivariate receptive field.

bands (0–25 kHz) and a length equivalent to 100 ms (10 ms
time bin)). PCA was also used to preprocess the neuronal
signals. The activity of 22 units (predicted unit was ex-
cluded) was represented by nine PCs (91% of signal variance
captured).

2.5. Prediction of responses

To evaluate the performance of the method for STRF es-
timation, we used five-fold cross-validation, i.e. we calcu-
lated the STRF using 80% of our data (“training” data) and
computed the predicted firing rate for the remaining 20% of
the signal (“testing” data). AfterTheunissen et al. (2000),

Fig. 2. Neurolets are the inverse Fourier transform of the STRF. Examples
of excitatory (dashed line) and inhibitory (solid line) neurolets created
from the first (B) and fourth (C) column of the STRF(A). For example, the
STRF at time 10 ms (first column) indicates that this neuron, 10 ms after
stimuli onset, is inhibited by low frequencies. Therefore, the correspond-
ing inhibitory neurolet (panel B: dashed line) has strong low frequency
components. D: sound waveform (twitter call). The signal in panel E cor-
responds to the results of filtering the twitter call using neurolets derived
from the STRF above and is the predicted response of the neuron.
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we used the correlation coefficient,R, to compare our pre-
dictions with neuron’s actual response and converted this
metric into the percent of variance explained,R2.

2.6. Neurolets

A neurolet is a temporal representation of the STRF, con-
structed by applying the inverse Fourier transform (iFT) to
the STRF. Multiplication of an acoustic signal by neurolets
produced the approximate response of a neuron, the STRF of
which was used to calculate the neurolets. To represent the
inhibitory and excitatory parts of the STRF, we applied the
iFT separately to its positive and negative parts. By so do-
ing, we obtained two waveforms representing the two sounds
that excite and inhibit, respectively, a given neuron the most
(Fig. 2). We call these new representations “neurolets,” as
they are similar in many ways to wavelets (Wickerhauser,
1994).

3. Results

3.1. Neuronal responses

We obtained neuronal responses from 17 locations in the
auditory cortex of two marmoset monkeys.Fig. 3 illustrates
examples of trial-by-trial (rasters) and average (histograms)
neuronal responses from two locations in the auditory cortex.
As can be seen, neuronal activity is strongly modulated by
the vocal calls and each neuron is modulated in a unique
manner.

3.2. Validation of STRF calculation

In order to test the performance of our model in a control
situation, an artificial neuronal response was generated for
the vocal calls. We used an “integrate and fire” model (INF)
of a neuron (Salinas and Sejnowski, 2002). Original and
recovered STRF are shown inFig. 4A and B. In Fig. 4C,
the spike-triggered average is given.Fig. 4D and Edisplay
examples of the raster plots of the observed and the simulated
neuron’s responses for a twitter. In both cases the mean firing
rate was the same.

3.3. Multivariate receptive field analysis—single neurons

To examine whether any acoustic, physiological, etc. vari-
able explains the non-linear components of the neuronal re-
sponses to the vocal calls, we extended our predictions of
neuronal responses by including those variables in our anal-
ysis. In this work, we used: spectrograms, derivatives of
spectrograms in time, envelope of sound amplitude, time
course, activity of other neurons, past activity of the ana-
lyzed neuron in preceding time or different combinations of
the above factors.

Fig. 3. Neuronal responses from the auditory cortex. Examples of spike
raster plots (A, C) and peri-stimulus time histograms (B, D) from neurons
located in the core area of auditory cortex. E: the time waveform of a
twitter call is shown at the bottom.

To analyze the spectrograms of the vocal calls, we calcu-
lated the ‘classical’ STRF, i.e. demonstrate a neuron’s re-
sponse function to the frequency content of sound as in a
spectrogram. The correlation coefficient (R) was used to es-
timate the similarity between the neuron’s predicted and ac-
tual response. The results summarized for 23 units are shown
in Fig. 6 (solid line). The mean value ofR was 0.43± 0.06
S.E.M. (range:−0.13 to 0.81) and so the analysis accounted
for ∼18.5% of variance. This result is similar to the range
of values reported byTheunissen et al. (2000).

Next, we examined the role of the derivatives of the spec-
trograms in improving predictions over the ‘classical’ STRF
analysis. This feature produced a consistent decrease ofR
by 0.1–0.2 (Fig. 6, dashed line). The distribution of values
for R (mean: 0.24±0.05 S.E.M.; range:−0.24 to 0.67) was
larger than zero, indicating that neurons were responsive to
the speed of relative changes of sound intensity (represented
by the derivative of the spectrogram). Predictions based on
the spectrogram derivatives thus accounted for∼5.8% of
variance.

To investigate if the derivative of the spectrogram pro-
vided unique information as compared to the use of the spec-
trogram alone, we compared predictions of the neuronal re-
sponse based on the spectrogram and on the combination of
the spectrogram and its derivative. There was no difference
between values ofR for these measures (R: 0.43 ± 0.27;
pairedt-test,t = 0.03,P > 0.05;Fig. 7andTable 1). There-
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Fig. 4. Validation of the LS method: (A) the original STRF, (B) the predicted STRF, (C) the spike-triggered average (STA). Examples of raster plots: (D)
a neuron’s response to a twitter; (E) results of simulated INF neuron’s response to the same twitter. The simulated neuron’s response is less concentrated
in time because it is a linear function of the spectrogram. In contrast, the actual neuron’s response is not linear.

fore, information related to sound intensity changes could
be obtained directly from the spectrogram.

Neuronal responses to twitters decrease with time after
stimulus onset (Fig. 5). The time-dependence of the STRF
was addressed by adding a vector with information about
the time course of each twitter. This manipulation resulted
in marginal improvements in predictions for most neurons
(R: 0.50±0.27; pairedt-test,t = 0.88,P > 0.05;Fig. 7and
Table 1). Replacing the linear function of time course with

Table 1
Summary of correlation coefficients calculated for predicted and actual neural responses

Spec Deriv Spec
+ deriv

Spec
+ ampl

Spec
+ time

Ensemble Spec
+ ensemble

Past Spec
+ past

Past
+ ensemble

Spec+ past
+ ensemble

Minimum −0.13 −0.24 −0.17 −0.14 −0.14 0.20 0.05 0.54 0.53 0.71 0.60
Mean 0.43 0.24 0.43 0.43 0.50 0.63 0.61 0.73 0.76 0.82 0.80
Maximum 0.81 0.67 0.82 0.81 0.81 0.88 0.87 0.82 0.85 0.90 0.89
S.D. 0.27 0.26 0.27 0.27 0.27 0.18 0.24 0.06 0.08 0.05 0.07
S.E.M. 0.06 0.05 0.06 0.06 0.06 0.04 0.05 0.01 0.02 0.01 0.013

For the predictions, the following information was used: spectrogram of twitter (spec), derivative of spectrogram (deriv), spectrogram and its derivative
(spec+ deriv), spectrogram and amplitude of temporal envelope of sound (spec+ ampl), spectrogram and time course of twitter (spec+ time), activity
of 22 neurons (ensemble), spectrogram and activity of 22 neurons (spec+ ensemble), neuron’s past activity (past), spectrogram and neuron’s past activity
(spec+ past), neuron’s past activity and activity of other neurons (past+ ensemble), spectrogram and neuron’s past activity and activity of other neurons
(spec+ past+ ensemble).

different non-linear curves (e.g. exponential decay) did not
further improve the results (data not shown).

Finally, to address the role of the amplitude of the sound
envelope, which is known to correlate with neuronal ac-
tivity in the marmoset monkey (Srikantan et al., 2002),
the amplitude of the sound envelope was used as a vari-
able in the regression analysis. The amplitude envelope was
calculated from the temporal representation of the sound
waveform, therefore, it has a non-linear relationship to the
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Fig. 5. The sum of the PSTHs of the 23 neurons to the three twitters
demonstrates a decrease of neuronal activity with time. Vertical lines
indicate the beginning of the next twitter.

log-transformed spectrogram. Predictions of neuronal re-
sponses based on the combination of this feature and the
spectrogram were no better than those made with the spec-
trogram alone (R: 0.43± 0.27; pairedt-test,t = 0.01, P >

0.05; Fig. 7 andTable 1).

3.4. Multivariate receptive field analysis—neuronal
ensembles

With our method, we can estimate the response of a single
neuron as a linear function of responses from other simulta-
neously recorded neurons. By comparing this result with the
predictions made using the spectrogram alone, we examined
how much information about the spectral representation of
sound may be present across multiple sites in the auditory
cortex. This analysis is shown inFig. 6, where the dotted
line depicts theR for predictions obtained by constructing
the receptive field based on responses of the ensemble of
neurons (mean: 0.63± 0.04 S.E.M.; range: 0.2–0.88). For
comparison, the solid line showsR for predictions made
with the spectrogram alone. Interestingly, predictions based
on the ensemble activity alone were roughly equivalent to
those based on the ensembles and the spectrogram (R for
ensemble: 0.63 ± 0.18; R for ensemble and spectrogram:
0.61 ± 0.24; seeFig. 7). This result suggests that predic-
tive information derived from the spectral features of sound
is simultaneously present in the activity of the neuronal en-
semble.

3.5. Multivariate receptive field analysis—time history of
spiking

Correlation coefficients between a neuron’s current re-
sponse and its response in the preceding 10 ms are shown in
Fig. 7. The large value ofR (0.73±0.01 S.E.M.) reflects the
fact that neurons’ responses depend to a large extent on their
past activity. By including spectrograms and past activity
our predictions improved (Fig. 7 andTable 1), the value of
meanR increased from 0.43 (for spectrograms alone) to 0.76
(t-test t(44) = 5.82, P < 0.05). Overall, we obtained the
highest mean correlations by including a neuron’s past ac-
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Fig. 6. Correlation coefficients calculated for predicted and actual neural
responses. For the predictions, we used the following information: spec-
trogram (solid line), derivative of spectrogram (dashed line), activity of
22 neurons (dotted line), neuron’s past activity and simultaneous activity
of other neurons (dash-dot line). By using responses from other neurons
we obtained significant improvement in the prediction compared to pre-
dictions from the spectrogram only (pairedt-test, t = 2.36, P < 0.05,
compare solid and dotted lines). Further improvements were made by us-
ing the time-history of the target neuron and the concurrent activity of
other simultaneously recorded neurons (pairedt-test, t = 5.82, P < 0.05;
dash-dot line). Replacing the spectrogram by its derivative reduced pre-
dictions (pairedt-test, t = 2.42, P < 0.05; dashed line).

tivity and other neuron’s responses (R: 0.82± 0.01 S.E.M.;
range: 0.71–0.90;Fig. 6 (dash-dot line)) and for spectro-
grams and past activity and other neuron’s responses (the
difference between these cases was not significant; paired
t-test, t = 1.16, P > 0.05). Adding any other additional
information did not improve our results, indicating that
those values ofR are probably close to the upper limit of
predictability for our dataset.
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show the extent of the rest of the data.
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3.6. Neurolets

The filters derived with our method for multivariate re-
ceptive field analysis allow for predictions of neuronal re-
sponses to novel acoustic stimuli in the same way as the
STRF. The difference between the ‘classical’ STRF and our
filters, which we call ‘neurolets,’ is that the STRF-based
predictions require conversion of the sound waveform into
the time-frequency domain. Neurolets, by contrast, operate
directly on the temporal representation of a sound, thus ap-
proximating the neuronal response faster and with a much
smaller computational cost. We found that convolving mar-
moset vocalizations with neurolets acts as a detector of spe-
cific periods within the vocalizations to which the neurons
are especially responsive (Fig. 2E). Consequently, neurolets
can be used as a denoising algorithm suppressing those parts
of a signal that do not evoke a neuronal response (Donoho,
1995; Quatieri, 2002). Neurolets derived from excitatory
(positive) parts of the STRF should maximally excite the
neuron. In contrast, neurolets derived from inhibitory parts
of STRF represent sounds that should inhibit the neuron.

4. Discussion

A novel method for multivariate spectrotemporal recep-
tive field analysis based on least-squares regression is de-
scribed in this manuscript. The LS method is well under-
stood and has successfully been applied in a variety of ap-
plications (e.g.Lawson and Hanson, 1995). The advantages
of the LS method are: speed of computation, thorough un-
derstanding of the method and its limitations, simplicity of
use, but the most interesting from our point of view is the
possibility to analyze, in the same equation, arbitrary sets of
different factors (e.g. spectrogram+ time course+ activity
of other neurons). This is important because it gives us a
tool for studying the contribution of different factors to a
neuron’s response.

The application of our new method to spike train data
from the marmoset auditory cortex revealed the importance
of features other than time-varying spectral aspects of nat-
ural sounds such as vocal calls in modulating single neu-
ron discharge. Traditional analyses with STRF methods that
only account for the spectral content of sounds cannot reveal
these relationships. We tested the relative gain/loss in pre-
dictability of neuronal responses as a function of several dif-
ferent acoustic (spectrogram, its derivative, amplitude enve-
lope, time after stimulus onset) and neuronal (time-history,
concurrent ensemble activity) features. This comparison un-
covered a major role for the time-history of the spike train
in conveying information about the current responsiveness
of neurons to vocal calls. Also, our findings indicate a high
level of redundancy in the auditory cortex. We could esti-
mate the response of a single neuron as a linear function of
the responses from the other units recorded in semi-random
places over 4 mm of cortex.

The main limitation of the LS method proposed here is
that it works with over-determined systems, i.e. the num-
ber of observations must be larger than the number of vari-
ables. This implies compromising temporal resolution or the
length of the STRF. Fortunately, often this problem can be
substantially overcome by dimensionality reduction of the
raw data. In our case, we used principal component anal-
ysis (as described in theSection 2). By this method we
can evaluate the linear contribution of the spectrogram to
a neuron’s response more robustly because PCA-based di-
mension reduction regularizes stimulus space and reduces
noise. Nevertheless this representation may not be optimal
for non-stationary signals. Natural sounds seem to be very
diverse but surprisingly they have similar statistics (Attias
and Schreiner, 1997; Lewicki, 2002). Alternatives to PCA,
such as independent component analysis (review on ICA es-
timation methods:Hyvärinen, 1999), may be better suited
to dealing with the statistics of natural sounds and thus may
better serve for preprocessing in quantitative receptive field
analyses.

In addition to providing insight into neuronal responses
to stimuli used in receptive field mapping experiment, the
method used for data analysis in this manuscript is able to de-
fine filters based on the multivariate regression analysis. We
call these filters ‘neurolets’ (Fig. 2). The difference between
neurolets and the ‘classical’ STRF is that the STRF requires
conversion of a sound waveform into the time-frequency do-
main. Neurolets, by contrast, operate directly on the tempo-
ral representation of a sound, thus approximating neuronal
responses faster and with a much smaller computational cost.
Such filters are a novel, brain-inspired means of process-
ing sounds. It has been postulated that neurons code natu-
ral sounds efficiently (Lewicki, 2002). Therefore, neurolets
could be useful as bases for efficient (compressed) repre-
sentation of natural sounds, in a similar way as wavelets
(Wickerhauser, 1994). Another interesting feature of those
filters is that neurolets can be used to design the optimal
stimulus for a neuron. The neurolets derived from excitatory
parts of STRF are equivalent to the most preferred sound
for a neuron, the STRF of which was used to calculate the
neurolets.

The application of multivariate receptive field analysis to
the activity of neuronal ensembles represents a significant
extension of ongoing efforts aimed at understanding how
complex sounds, such as natural vocalizations, are repre-
sented in the auditory cortex of primates (Wang, 2000; Wang
et al., 1995). Single neurons in primary auditory cortex re-
spond to a wide range of vocal calls and complex sounds.
Yet, while natural vocalizations evoke stronger responses
in primary auditory cortex compared with other complex
sounds, including time-reversed vocal calls, single neurons
do not function as “call detectors.” Rather, the encoding
of the acoustic vocal calls appears to be accomplished by
spatially distributed neuronal populations. The methods de-
scribed here support those findings, and could provide valu-
able new insights into the encoding mechanisms that con-
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tribute to the representation of complex sounds in auditory
cortex.
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Appendix A

Sample MATLAB code demonstrating usage of the
LS method for evaluating multivariate receptive fields
is given below. In this example, the spectrogram is
preprocessed with PCA. The input data for the MAT-
LAB m file is the neural response (PSTH), the spec-
trogram, and the time course of stimulus. The output
of the function is the multivariate receptive field (mrf).

function mrf= LS strf (psth, spectrogram, time)
i = 4: size(spectrogram, 2); % analyzed time window:

0–30 ms; bin: 10 ms % part of spectrogram (within
analyzed time window) is converted to single row
spec= [spectrogram(:, i)′ spectrogram(:, i – 1)′
(spectrogram)(:, i – 2)′ spectrogram(:, i – 3)′];

psth= psth(i); % psth
time= time(i); % time course of stimulus
[pc, scores, latent, tsquare] = princomp(spec); %

preprocessing with PCA
lv = fix(0:2 * size(pc, 1)); % taking top 20% of PCs
a = [scores(:, 1:lv) time′]\psth′; % LS model
% recovering STRF from LS coefficients
mr fpca= pc(:, 1:lv)*a(1:lv);
sz= size(spectrogram, 1);
for i = 1: size(spec, 2)/sz % no. of time lines of RF
mrf(:, i) = mrf pca(sz* ( i – 1) + 1: sz* i);
end
figure;imagesc(mrf)

This function, together with sample data and additional
code, can be downloaded fromhttp://spikelab.jbpierce.org/
strf.
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