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Abstract—The causal factors determining the onset and

severity of multiple sclerosis (MS) are not well understood.

Here, we investigated the influence of chronic stress on clin-

ical symptoms, metabolic and epigenetic manifestations of

experimental autoimmune encephalomyelitis (EAE), a com-

mon animal model of MS. Lewis rats were immunized for

monophasic EAE with MBP69-88 and were exposed to

chronic stress for 37 days starting 7 days prior to immuniza-

tion. The exposure to stress accelerated and exacerbated

the clinical symptoms of EAE. Both stress and EAE also dis-

rupted metabolic status as indicated by trace elemental

analysis in body hair. Stress particularly exacerbated chlo-

rine deposition in EAE animals. Moreover, deep sequencing

revealed a considerable impact of stress on microRNA

expression in EAE. EAE by itself upregulated microRNA

expression in lumbar spinal cord, including miR-21, miR-

142-3p, miR-142-5p, miR-146a, and miR-155. Stress in EAE

further up-regulated miR-16, miR-146a and miR-155 levels.

The latter two microRNAs are recognized biomarkers of

human MS. Thus, stress may synergistically exacerbate

severity of EAE by altering epigenetic regulatory pathways.

The findings suggest that stress may represent a significant

risk factor for symptomatic deterioration in MS. Stress-

related metabolic and microRNA signatures support their

value as biomarkers for predicting the risk and severity of

MS. � 2017 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

Multiple sclerosis (MS) is considered as an autoimmune

disorder and characterized by long-lasting

neuroinflammation accompanied by leukocyte infiltration

into the central nervous system (CNS), destruction of

CNS myelin, axonal loss and gliosis. The exact cause of

MS is not known, however, causal mechanisms are

believed to include genetic and environmental

components. Previously studied environmental factors

include availability of vitamin D (Munger et al., 2004),

exposure to Epstein–Barr virus (Ascherio and Munger,

2010), and stress (Artemiadis et al., 2011).

The causal factors contributing to onset and severity

of MS are not well understood; however, stress was

suggested to modulate the inflammatory processes and

symptoms of this disease (Huitinga et al., 2004; Heesen

et al., 2007 b). Patients afflicted by MS frequently report

that stress triggers relapses and exacerbates the clinical

symptoms (Ackerman et al., 2002; Buljevac et al., 2003;

Heesen et al., 2007a). Furthermore, psychological stress

may exacerbate the course of relapsing-remitting MS

(Karagkouni et al., 2013) and cause new lesions in the

brain of MS patients (Mohr et al., 2004; Gold et al.,

2005). Depending on its duration and severity, stress

can disrupt immune functions and autoimmunity pro-

cesses. In animal models, chronic stress in particular

has been associated with increased vulnerability to infec-

tious disease and autoimmunity (Godbout and Glaser,

2006; Harpaz et al., 2013), CNS inflammation (de

Pablos et al., 2006) and experimental neuropathologies

(Smith et al., 2008).

As a response to a stressful experience, the

hypothalamic–pituitary–adrenal (HPA) axis secretes

glucocorticoids, such as cortisol, which inhibits the

activation, proliferation and recruitment of immune cells

(Barnes, 2006). On one hand, excess glucocorticoids

may suppress the immune system and reduce inflamma-

tion within the peripheral nervous system (Perez-Nievas

et al., 2010). On the other hand, elevated glucocorticoid

levels may actually exert pro-inflammatory actions

(O’Connor et al., 2003) and prolonged stress may result

in glucocorticoid receptor resistance that prevents the

downregulation of inflammatory responses (Cohen

et al., 2012). Dinkel et al. (Dinkel et al., 2003) reported

that excess glucocorticoids increase the inflammatory

response in response to neuronal injury. In line with these
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complex effects, stress was shown to diminish symptoms

in a common animal model of MS, experimental autoim-

mune encephalomyelitis (EAE) (Levine et al., 1962;

Perez-Nievas et al., 2010), while other studies indicated

that stress may rather accelerate EAE onset and symp-

toms (Chandler et al., 2002). However, no systematic

study has yet linked chronic stress to the course of EAE

and associated inflammatory, metabolic and potential epi-

genetic responses.

Epigenetic regulation, through components such as

microRNAs (miRNAs), may critically affect immune

system activation, neurogenesis and myelin formation in

MS (Baek et al., 2008; Selbach et al., 2008; Junker,

2011; Junker et al., 2011). We hypothesized that stress

will alter the characteristic miRNA signatures of EAE

and offer a new experience-dependent biomarker of MS.

In the present study, we used MBP-induced EAE as a

rat model of hallmark neuropathological features of MS

to determine if chronic mild stress may act as a potentially

predisposing and accelerating factor in MS. In addition to

the classic motor symptoms, we examined effects of

stress on inflammatory and metabolic functions in EAE

in relation to miRNA deep sequencing profiles. Thus,

the present study is the first to investigate a multi-level

signature of stress and EAE including up-stream epige-

netic and down-stream metabolic biomarkers.
EXPERIMENTAL PROCEDURES

Animals

Thirty-one female Lewis (LEW) rats (56–70 days old;

Charles River) were used. The animals were housed in

groups of two or three under standard environmental

conditions (12:12 h light/dark cycle with lights on at 7:30

AM). Animals had access to food and water ad libitum.

All experimental procedures were performed in

accordance with the guidelines of the Canadian Council

on Animal Care and approved by the institutional Animal

Care Committee of the University of Lethbridge.
Experimental design

The experiment design allowed detailed neurobehavioral

assessment over a 37-day period followed by metabolic

and spinal cord miRNA changes on day 30 post-EAE

induction. Baseline testing prior to EAE induction

included mechanical allodynia to test pain (‘‘Baseline”).

Animals were randomly assigned to one of the following

experimental groups: (1) CFA/MBP-inoculation (EAE

n= 9); (2) inoculated with CFA/MBP and experienced

restraint stress for a total of 37 days (EAE+ Stress

n= 8); (3) CFA inoculation and exposure to stress for

37 days (Stress n= 7); and (4) CFA inoculation only

(Control n= 7). Starting seven days prior to EAE

immunization, stress groups (15 Lewis rats: EAE

+ Stress n= 8 and Stress n= 7) experienced daily

restraint stress for 20 min in the morning hours

(between 8:00 and 10:00 AM) for 37 consecutive days,

up to day 30 post-immunization. Rats were monitored

daily for weight loss and neurological signs using the 5-

Point Scale as described below. Post-immunization
testing included mechanical allodynia tests on day 5

after immunization (‘‘Pre”), onset of EAE signs

(‘‘Onset”), peak of EAE clinical severity (‘‘Peak”), first

day of full recovery from EAE (‘‘Recovery”), and 10 days

following full recovery (‘‘Post”).

Stress protocol

Animals were placed individually in transparent Plexiglas

cylinders (5-cm inner diameter) that maintained them in

a standing position without compression of the body

(Metz et al., 2005). Ventilation was possible through per-

forated ends of the container.

Induction of EAE

Seventeen rats were immunized with guinea pig (GP)

myelin basic protein (MBP) (segment 69–88:

YGSLPQKSQRSQDENPVVHF) obtained from

GenScript (Piscataway, NJ) for monophasic EAE. EAE

was induced by subcutaneous immunization with GP

MBP69-88 emulsified in Freund’s adjuvant (Becton

Dickonson Co., NJ) at the base of the tail. Freund’s

adjuvant was supplemented with 4-mg/ml heat killed

Mycobacterium tuberculosis H37Ra (Becton Dickonson

Co., NJ) to make complete Freund’s adjuvant (CFA).

The final concentration of CFA in the emulsion was 1

mg/ml. Stress and control rats were treated as sham

controls with CFA only.

Behavioral testing

Behavioral assessment was performed from video

recorded data by observers blind to experimental groups

and treatments.

Monitoring clinical EAE symptoms using the 5-Point
Scale

Rats were weighed and examined daily for neurological

signs using the classic 5-Point Scale according to

previously published criteria (Stromnes and Goverman,

2006). Signs of EAE were graded on the following 5-

point scale: Grade 0, no clinical signs; Grade 1, paralyzed

tail; Grade 2, loss of limb coordination; hind limb paresis;

Grade 3, both hind limbs paralyzed: Grade 4: forelimbs

paralyzed; Grade 5, moribund (Stromnes and

Goverman, 2006).

Mechanical allodynia

A set of calibrated von Frey hair monofilaments were

used daily to assess sensitivity to punctate mechanical

stimuli as a measurement of pain sensitivity

(Olechowski et al., 2009, 2013). Rats were placed in a

clear Plexiglas chamber on an elevated wire mesh

screen. Calibrated von Frey hair filaments were applied

to the plantar surface of each hind paw in the ascending

order of bending force (range: 2.0–100.0 g). Each hair

was applied 5 times per paw, and the number of nocifen-

sive responses (vigourous shaking, prolonged lifting, lick-

ing or biting of the stimulated paw) was recorded. The

monofilament which produced nocifensive responses
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greater than 60% of the time was recorded as the

mechanical nociceptive threshold.
Tissue collection

After completion of behavioral tests, rats were

anesthetized and blood samples were collected by

cardiac puncture between days 31 and 33 post-EAE

immunization using heparinized catheters and collection

tubes. All samples were collected at the same time of

day. The rats were then sacrificed by intracardiac

infusion with 0.2 ml of sodium pentobarbital (Euthansol;

CDMV Inc., QC). After cardiac arrest, the animals were

rapidly decapitated and cervical spinal cord segments

were collected and flash-frozen for further miRNA

profiling. In addition, hair samples were also collected

and stored at room temperature for further analysis.
Deep sequencing miRNA analysis

Total RNA was isolated from cervical spinal cord

segments from Stress + EAE, EAE, Stress Only and

Naı̈ve control rats (n= 3 each) as previously described

(McCreary et al., 2016). Illumina TruSeq Small RNA

sequencing kits were used for library preparation. The

samples were given individual barcodes. Barcoded small

RNA libraries were loaded on a single flow-cell lane and

sequenced using an Illumina GAIIx genomic analyzer

(Illumina, CA). Briefly, base calling and demultiplexing

was completed using CASAVA 1.8.1 software pipeline

with default settings. Short read quality was examined

using FastQC software (http://www.bioinformatics.bbsrc.

ac.uk/projects/fastqc/).

Since miRNAs are mostly shorter than 26 bp, a

substantial portion of short reads was expected to

contain part of the adapter sequence; adapters were

trimmed using Cutadapt software

(http://code.google.com/p/cutadapt/). Adapters were

trimmed from 30 ends using Cutadapt software with

options set to retain only sequences between 17 and 27

nt since this was the expected range of miRNA length.

FastQC quality check was performed and counting was

performed using standalone MicroRazerS version 1.0

(Emde et al., 2010). Count data from MicroRazerS was

supplied to DESeq bioconductor package for statistical

comparisons (Anders and Huber, 2010). On average

>55% of trimmed reads were mapped (allowing 1 mis-

match) to hairpin miRNA sequences. miRNAs having less

than 5 reads on average were removed from further anal-

ysis. Quality check of data was done and the report

showed that at least two of the biologically replicated sam-

ples cluster together. Results were filtered for differentially

expressed miRNAs using p-values (p< 0.05, corrected

for multiple testing using the Benjamini–Hochberg

method), and false discovery rate (FDR) � 10%.
Hair trace elemental analysis

Approximately 0.5 g of hair was collected from the

abdomen and back from each rat post-mortem. To

account for metal trace contamination by the collection

process, fabric was cut with the same pair of scissors
used for hair collection and values were subtracted from

the experimental data. Samples were stored in 2-ml

Eppendorf tubes at room temperature. Hair trace

elemental analysis was performed by CanAlt Health

Laboratories (City, ON, Canada). Briefly, about 300 ± 5

mg of each sample was transferred into tared, labeled

centrifuge tubes, and the exact weight was recorded. To

each sample digestion tube, 3.0 ml of reagent-grade

nitric acid was added. Samples were incubated for

25 min and then subjected to acid microwave digest, in

order to stabilize the elements of interest. The digested

solution was analyzed for amounts of mineral element

and trace metals by inductively coupled plasma mass

spectrometry. Sample results were quantified by

comparison with calibration solutions of known

concentrations.

Statistical analysis

Statistical analyses were carried out using SPSS version

21.0 software (IBM, NY). Based on random assignment of

animals to groups, statistical differences were compared

between groups by a one-way analysis of variance

(ANOVA) with Fisher’s least significant difference (LSD)

post hoc test repeated measures analysis of variance

(RM ANOVA) with LSD post hoc test, and t-test as

necessary. In addition, if Mauchley’s W test indicated

violation of sphericity, the degrees of freedom were

corrected using the Greenhouse–Geisser test. Statistical

significance was set at p< 0.05. For miRNA data t-

values were calculated with p-values below a p-value

(<0.10). All data are presented as mean ± standard

error of the mean (SEM).

RESULTS

EAE reduces body weight

To reflect the physical impact of the chronic mild stress

protocol body weight was determined daily throughout

the 30-day time course after EAE induction. A

significant effect of Group was found in body weight

(p< 0.05). A significant reduction in body weight was

observed in the EAE group (p< 0.05, LSD post hoc)

and also in the EAE + Stress group (p< 0.01, LSD

post hoc) compared to Controls (Fig. 1).

Stress exacerbates EAE symptom severity

Rats immunized with MBP69-88 were scored daily using

the 5-point scale for signs of neurological impairment

(Fig. 2A). There was a significant effect of Day (F
(2.45,66.17) = 21.42, p< 0.0001), and Day � Group

interaction (F(7.35,66.17) = 7.83, p< 0.0001). EAE

animals developed clinical signs of disease between day

10 and day 16 post immunization. In EAE+ Stress

animals the clinical severity of EAE was greater

between day 11 and 14 post immunization in

comparison to animals with EAE treatment only

(Fig. 2A). EAE animals initially presented with partial

paralysis of the tail (Grade 0.5) and later progressed to

a paralyzed tail and/or loss in coordinated movements

(Grade 1) and hind limb paresis (Grade 2). EAE

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://code.google.com/p/cutadapt/


Fig. 1. EAE caused changes in body weight. Exposure to EAE

caused a significant reduction in body weight in EAE (p< 0.05) and

Stress + EAE (p< 0.01) animals compared to naı̈ve Controls.

Groups include naı̈ve Controls, n= 7; Stress only, n= 7; EAE,

n= 9; Stress + EAE, n= 8. Asterisks indicate significances:
*p< 0.05, **p< 0.01. Error bars represent means ± SEM.

Fig. 2. Stress altered the time course of the severity of clinical

symptoms and mechanical allodynia. (A) Clinical severity across
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+Stress animals initially presented with partial paralysis

of the tail (Grade 0.5) and progressed to loss in

coordinated movements, hind limb paresis and/or both

hind limbs paralyzed (Grade 2, or 3, respectively).

Therefore, EAE + Stress animals presented with more

severe clinical symptoms than the EAE group.

Accordingly, there were significant differences between

the EAE (p< 0.01, LSD post hoc test) and EAE

+ Stress (p< 0.01, LSD post hoc test) groups in

comparison to Stress or naı̈ve Control animals.

Conversely, there was a non-significant trend for an

overall group difference between EAE and EAE

+ Stress animals (p= 0.05, LSD post hoc test).

30 days revealed more severe symptoms among EAE+ Stress

animals compared to EAE alone. Stress exacerbated clinical symp-

toms of EAE from causing tail paralysis to causing hind limb paralysis.

(B) Sensitivity to mechanical allodynia determined by various von

Frey hair fiber weights. EAE and EAE+ Stress animals showed

reduced sensitivity at the peak of clinical symptoms. Symbols indicate

significant differences: #p< 0.05, ##p< 0.01, ###p< 0.001, EAE vs.

Control or paired comparisons, respectively; *p< 0.05, EAE

+ Stress vs. EAE; $p< 0.05, $$p< 0.01, $$$p< 0.001, EAE

+ Stress vs. Control. Error bars represent means ± SEM.
EAE represents a critical determinant of pain
threshold

Pain threshold was inferred based on the mechanical

nociceptive response to von Frey hair stimulation of the

hindpaw (Fig. 2B). There was a Phase effect (F
(3.35,87.15) = 9.55, p< 0.001), and Phase � Group

interaction (F(10.06,87.15) = 4.88, p< 0.001).

Interestingly, Stress animals showed increased

sensitivity to pain at baseline in comparison to Controls

(F(3,27) = 1.81, p< 0.05) indicating that acute stress

increased mechanical sensitivity. By contrast, higher

pain thresholds were seen during the peak phase of

symptoms in EAE (F(3,27) = 5.32, p< 0.05), and in

EAE + Stress (F(3,27) = 5.32, p< 0.05) animals in

comparison to Stress animals. During the post phase of

disease, EAE animals demonstrated a reduced pain

threshold in comparison to Stress animals (F(3,27)

= 1.52, p< 0.05).

In addition, significant changes in pain threshold were

seen during baseline and the pre-symptomatic phase of

EAE (p< 0.05, paired t-test), onset and peak

(p< 0.05, paired t-test), and peak and recovery phase

of EAE (p< 0.001, paired t-test) in the EAE group.

Likewise, EAE + Stress animals showed a significant

difference in pain threshold during pre and onset

(p< 0.05, paired t-test), onset and peak (p< 0.05,
paired t-test), and peak and recovery phases of EAE

(p< 0.001, paired t-test).
Interactions of EAE and stress dysregulated spinal
miRNA expression

Deep sequencing analysis of the cervical spinal cord

revealed 301 expressed mature miRNAs. Fig. 3A shows

all miRNAs that were differentially expressed as a

function of stress and/or EAE. In EAE compared to

naı̈ve Controls, five miRNAs were up-regulated,

including miR-21-5p, miR-142-3p, miR-146a-5p, miR-

142-5p, miR-155-5p (FDR � 5%; see Fig. 3A). Stress

+ EAE compared to Control rats showed elevated

expression of miR-21-5p, miR-142-3p, miR-146a-5p,

miR-142-5p, and miR-155-5p. EAE compared to Stress

rats showed up-regulated miR-21-5p, miR-142-3p,



Fig. 3. Stress is associated with epigenetic and metabolic biomarkers of autoimmunity and MS. (A)

MicroRNA analysis of spinal cord tissue. In particular, expression of miR-21, miR-142-3p, miR-142-5p,

miR-146a, miR-146 and miR-155 was elevated in both EAE and EAE+ Stress animals in comparison to

stress only or control animals. Stress in EAE animals exacerbated miR-16, miR-146a, and miR-155. Note

that miR-146a and miR-155 are recognized biomarkers of human MS. (B) Hair trace element analysis as

indicator of metabolic status. EAE reduced hair arsenic and cerium content and elevated potassium

levels. Stress in naı̈ve controls and in EAE rats particularly elevated chlorine and vanadium deposition.

Data are shown as percentage of control values. Symbols indicate significant differences: *p< 0.05,
**p< 0.01 compared to Control group; $p< 0.05, $$p< 0.01, $$$p< 0.001 EAE+ Stress vs. EAE;
#p< 0.05, ##p< 0.01 compared to Stress group. Error bars represent means ± SEM.
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miR-146a-5p, miR-142-5p, and

miR-155-5p, whereas miR-

219a-5p and miR-153-3p were

down-regulated (Fig. 3A).

In Stress + EAE compared

to Stress rats, miR-21-5p, miR-

142-3p, miR-146a-5p, miR-142-

5p, miR-155-5p and miR-16-5p

were elevated (Fig. 3A). In turn,

in Stress + EAE compared to

EAE rats, miR-16, miR-146a,

miR-153, miR-155, miR-196b-

5p, miR-345-3p, miR-129-2-3p

were up-regulated, and miR-

153-3p, miR-140-3p and miR-

673-3p were down-regulated

(p< 0.05).
Stress and EAE result in
metabolic imbalance

Hair trace elemental analysis

(Fig. 3B) revealed that EAE

reduced arsenic (F(3,14)

= 6.04, p< 0.05) and cerium

(F(3,14) = 12.76, p< 0.001)

content levels, and increased

potassium (F(3,14) = 5.10,

p< 0.01) contents relative to

naı̈ve Controls. EAE + Stress

decreased nickel and potassium

levels in comparison to Stress

and EAE treatments alone (F
(3,14) = 3.25, p< 0.05; F

(3,14) = 5.10, p< 0.05,

respectively). Vanadium (V)

levels were increased in EAE

+ Stress compared to Controls

(F(3,14) = 6.64, p= 0.01).

EAE + Stress also raised

arsenic and chlorine deposition

compared to EAE alone (F
(3,14) = 5.52, p< 0.01; F
(3,14) = 6.04, p< 0.001,

respectively). Stress depleted

cerium content levels in

comparison to Controls (F

(3,14) = 12.76, p< 0.001)

while at the same time raising

chlorine, potassium and

vanadium levels (F(3,14)
= 5.52, p< 0.05; F(3,14)
= 5.10; p< 0.01, (F(3,14)
= 4.81, p< 0.01, respectively).

These findings suggest that

stress and EAE synergistically

alter fundamental metabolic

functions leading to altered hair

elemental accumulation.
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DISCUSSION

The specific triggers of human MS are largely unknown.

As one of the most potent modulators of immune and

metabolic functions, stress may be a critical determinant

of MS onset and severity. Here we determined if chronic

mild stress affects hallmark behavioral, metabolic and

epigenetic manifestations of MS in an EAE rat model.

Exposure to chronic stress beginning prior to EAE

induction exacerbated the clinical symptoms but not

pain sensitivity. A new approach to study fundamental

metabolic functions using hair trace elemental analysis

revealed that stress elevated deposition of chlorine and

cerium in EAE. EAE alone reduced the deposition of

arsenic and cerium. Importantly, stress had large

synergistic effects with EAE on central epigenetic

regulatory pathways involving miRNA expression in the

cervical spinal cord. In particular, miR-146a and miR-

155, both regarded as biomarkers of human MS,

appeared particularly responsive to stress and showed

significant differences beyond changes linked to EAE

alone. These findings support the hypothesis that stress

may critically exacerbate EAE severity by altering up-

stream epigenetic regulation that is reflected in down-

stream metabolic markers. These findings propose that

stress may also serve as a risk factor in human MS.

The present data are in line with previous

observations showing that stress has long-lasting effects

on sensorimotor functions (Metz et al., 2001, 2005), pain

threshold (Olechowski et al., 2009, 2010, 2013) and the

clinical severity of neurodegenerative disease (Smith

et al., 2008; Babenko et al., 2012). Moreover, stress dras-

tically exacerbated the clinical severity of EAE symptoms.

These findings are in line with previous observations that

stress may worsen EAE symptoms (Chandler et al.,

2002), while others indicated that stress may diminish

severity of clinical symptoms in EAE (Levine et al.,

1962; Perez-Nievas et al., 2010). Reasons for this varia-

tion may be linked to severity, type and duration of the

stressor and the rodent strain used (Metz et al., 2001,

2005). The present study used chronic exposure to

repeated mild psychological stress starting prior to immu-

nization as a protocol which bears particular ecological

validity considering its prevalence in the human popula-

tion (Wood et al., 2010; Agyei et al., 2014).

Stress-associated changes in EAE animals were also

reflected in metabolic markers, such increased chlorine,

cerium and vanadium content. Hair follicles grow for

approximately 7–20 days in rats (Ambeskovic et al.,

2013). Therefore, hair collected in the present study rep-

resents an assessment of cumulative changes during clin-

ical EAE symptoms. In stressed EAE rats the

accumulation of chlorine may indicate altered immune

competence (Exon et al., 1987). Reduced hair levels of

vanadium have been implicated in human MS patients

(Ryan et al., 1978), however, the present data suggest

that these levels are elevated as a function of stress.

Vanadium is proposed to actively modify immune func-

tions, specifically by increasing the level of circulating B

and T cells (Mravcova et al., 1993). Cerium levels on

the other hand were generally decreased by EAE treat-

ment. Cerium has been associated with expression of
inflammatory cytokines (Sang et al., 2014) and up-

regulated IL-1b (Sang et al., 2014). Changes in cerium

content may therefore reflect inflammatory activity during

stress and symptomatic EAE. Further research on the

role of trace elements as predictive and/or causative

biomarkers in EAE and MS is needed to be able to identify

potential pathogenic metabolic pathways or diagnostic

biomarkers.

Altered metabolic functions may be directly linked to

altered epigenetic regulation of gene expression and

immune status (Ahmed et al., 2009; Pearce and Pearce,

2013). Some of the underlying mechanisms that poten-

tially mediate the impact of stress on EAE symptoms were

investigated through miRNA profiling. Deep sequencing

revealed that EAE up-regulated miR-21, miR-142-3p,

miR142-5p, miR-146a, and miR-155 and moderately

down-regulated miR-153, and miR-219a. Stress in EAE

particularly exacerbated miR-16, miR-146-a and miR-

155 expression, while stress alone had no effect on these

miRNAs. Notably, the present findings reproduce epige-

netic hallmark features of human MS, as expression of

miR-21, miR-142-3p, miR-142-5p, miR-146a, and miR-

155 were found to be increased in active human MS

lesions (Junker et al., 2009; Koch et al., 2013). miR-219

expression, on the other hand, is increased in inactive

MS lesions (Junker et al., 2009) and associated with

oligodendrocyte regulation and myelin maintenance (Li

and Yao, 2012). miR-21 promotes Th17 cell differentiation

and mediates EAE symptoms (Murugaiyan et al., 2015;

Wang et al., 2016). Treatment with anti-miR-21 oligonu-

cleotide is able to reduce the clinical severity of EAE

(Murugaiyan et al., 2015). In addition, miR-21 and miR-

146a are important regulators of Treg-triggered immune-

suppression (Zhou et al., 2015). miR-142-3p, which inhi-

bits IL-10 translation (Ding et al., 2012) along with miR-

16 and miR-155 may represent suitable biomarkers of

therapeutic response in MS (Arruda et al., 2015).

miR-21, miR-142, miR-146a, and miR-155 are

believed to target genes regulating CD47 expression

(Junker et al., 2009). miR-155 in particular has been

described as a multifunctional non-coding RNA in patho-

logical processes, including inflammation and response

to elevated oxidative stress (Jacometo et al., 2015;

Wang et al., 2015; Yang et al., 2015). Inhibition of miR-

155 activity has been shown to exert angiogenic and neu-

roprotective properties (Caballero-Garrito et al., 2015)

and to reduce expression of the integrin-associated pro-

tein CD47 in active MS lesions (Junker et al., 2009).

CD47 inhibits the phagocytic activity of macrophages

(Oldenborg et al., 2000; Yamao et al., 2002; Ishikawa-

Sekigami et al., 2006) and cytokine production of dendritic

cells (Latour et al., 2001). CD47 and its receptors are

involved in the pathogenesis of autoimmune EAE by sup-

pressing infiltration of pathogenic Th17 cells (Gao et al.,

2016). Moreover, in human MS, miR-155 expression is

increased in peripheral circulating CD14+ monocytes,

which act as a co-receptor for the detection of pathogens

(Junker et al., 2009; Moore et al., 2013).

On the other hand, miR-155 is able to up-regulate pro-

inflammatory cytokine responses in CNS-resident

myeloid cells and impairs adaptive immune responses
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(Moore et al., 2013). Thus, although miR-155 may have

potentially protective functions by preventing phagocyto-

sis by macrophages, the present clinical findings suggest

that its pro-inflammatory role may be dominating in the

EAE model (Junker et al., 2009). This hypothesis is sup-

ported by the observation that mice lacking miR-155 do

not develop EAE mainly due to defective T cell activity

in the immune response (Lind and Ohashi, 2014).

Notably, miR-155 is elevated by stress (Lecchi et al.,

2016) and it is also affected by various other environmen-

tal influences (Faraoni et al., 2009; Jacometo et al.,

2015). miR-155 has therefore become an epigenetic bio-

marker of human MS while the present findings also con-

firm that this marker is highly responsive to stress in the

EAE condition (Leung and Sharp, 2010; Babenko et al.,

2012). Similar interactions may also apply to miR-146a,

given that this miRNA was overexpressed by EAE and

further elevated by stress. Its particular role in the control

of Toll-like receptor and cytokine signaling (Taganov

et al., 2006) as a function of stress still remains to be

investigated in the EAE model.
CONCLUSIONS

Using an EAE rat model, the present findings suggest that

chronic mild stress may critically influence clinical

symptoms of MS through altering metabolic and

epigenetic pathways. Stress may regulate epigenetic

hallmarks of MS, in particular miR-146a, and miR-155,

which may present a mechanism how environmental

factors interact with pathogenic processes involved in

MS. Adverse experience, via epigenetic regulatory

mechanisms, may therefore potentially represent a risk

factor in MS. The present findings provide new insights

into experience-dependent modulation of demyelination

and suggest new metabolic and epigenetic signatures of

autoimmune processes that may provide a new

opportunity to identify predictive biomarkers and

therapeutic targets for MS.
ONE SENTENCE SUMMARY

Experience-dependent mechanisms alter epigenetic and

metabolic biomarkers of MS and exacerbate clinical

symptoms in an animal model.
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