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Learning to Predict Consequences as a Method of
Knowledge Transfer in Reinforcement Learning

Eric Chalmers, Edgar Bermudez Contreras, Brandon Robertson, Artur Luczak, and Aaron Gruber

Abstract— The reinforcement learning (RL) paradigm allows
agents to solve tasks through trial-and-error learning. To be
capable of efficient, long-term learning, RL agents should be
able to apply knowledge gained in the past to new tasks they
may encounter in the future. The ability to predict actions’
consequences may facilitate such knowledge transfer. We consider
here domains where an RL agent has access to two kinds of
information: agent-centric information with constant semantics
across tasks, and environment-centric information, which is
necessary to solve the task, but with semantics that differ between
tasks. For example, in robot navigation, environment-centric
information may include the robot’s geographic location, while
agent-centric information may include sensor readings of various
nearby obstacles. We propose that these situations provide an
opportunity for a very natural style of knowledge transfer,
in which the agent learns to predict actions’ environmental
consequences using agent-centric information. These predictions
contain important information about the affordances and dangers
present in a novel environment, and can effectively transfer
knowledge from agent-centric to environment-centric learning
systems. Using several example problems including spatial navi-
gation and network routing, we show that our knowledge transfer
approach can allow faster and lower cost learning than existing
alternatives.

Index Terms— Egocentric, navigation, network routing,
reinforcement learning (RL), transfer learning.

I. INTRODUCTION

ONE of the most important aspects of intelligent behavior
is the ability to learn and adapt to changing situa-

tions [1]. This often requires agents to apply previously
acquired knowledge to similar but novel situations, an ability
known as transfer learning. Transfer learning has been studied
extensively in psychology, and is a key concept related to
learning and knowledge acquisition [2]–[6]. In more practical
terms, transfer learning can be understood as the capability to
“learn to learn” [7], so that as an agent learns, its ability to
learn increases. In artificial intelligence, the development of
systems capable of transfer learning remains a challenge.

Reinforcement learning (RL) is a machine learning
paradigm in which an agent learns suitable behavior
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through interaction with its environment [8]. Traditional
RL approaches model the environment as a Markov decision
process (MDP) consisting of a set of discrete states S =
{s1, s2, s3 . . .}, and actions A = {a1, a2, a3 . . .} that may be
executed from each state. Executing action a from state s
causes a transition to state s′ according to a transition function
describing P(s′|s, a), and triggers a reward r according to a
reward function, r = R(s, a, s′). If the agent’s objective is
to maximize reward, the value Q of executing action a from
state s is

Q(s, a)= E[r + γ × maxa′(Q(s
′
, a′))] (1)

where γ ε [0,1] is a discount factor controlling the agent’s
degree of preference for immediate rewards over future ones.
The agent typically has no prior knowledge of the transi-
tion and reward functions, and must learn value estimates
iteratively as it explores the environment. Individual value
estimates learned in one task may or may not be valid in
another: transfer learning techniques identify conditions that
permit transfer, and the specific pieces of knowledge that are
transferrable.

In this paper, we focus on a particular kind of transfer that
is possible when the agent has access to an agent-centric space
of state variables with constant semantics across tasks, and an
environment-centric space of state variables whose semantics
may change across tasks.

As an example, imagine a search-and-rescue robot designed
to detect injured people inside damaged buildings. The robot
is equipped with cameras, microphones, and other sensors,
as well as a dead-reckoning system that estimates the robot’s
location in the building. The sensor readings in this example
form an agent-centric space with consistent semantics across
tasks—a human call for help means the same thing in one
building as it does in another. The location information, on the
other hand, forms an environment-centric space with differing
semantics across tasks: a location 10 m from the exit may
conceal an injured person in one building, and a hazardous fire
in another. In these types of problems, transfer learning can be
achieved (and environment-centric learning can be accelerated)
by transferring knowledge from agent-centric to environment-
centric systems.

A. Related Work

RL is an active research field, attractive in artificial intelli-
gence and robotics [9] as a very natural trial-and-error style of
learning. Transfer learning is a subject of considerable research
effort in the RL field, due to its importance as a key part of
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efficient long-term learning. We refer the reader to [10] for
a thorough review of knowledge transfer methods in RL, and
provide a brief overview of the relevant and recent methods
here.

Some transfer learning methods employ hierarchical behav-
ioral control, such as that proposed in [11]. Mulling et al. [12]
present a framework in which a robot learns several motor
primitives, and then transfers knowledge of the motor primi-
tives to the larger task of playing table tennis. In [13], a robot
learned low-level grasping motions, and then used RL at a
higher level to combine these motions into a successful object-
grasping program. Hart and Grupen [14] advocate an agent-
centric rather than an environment-centric representation of
behavior, which is highly relevant here. They show that by
relying on an agent-centric representation, transferrable skills
may be learned, from which hierarchical programs may be
assembled.

Hierarchical abstraction can be applied in the state and
action spaces as well. Chalmers et al. [15], [16] and
Shoeleh et al. [17] created hierarchical abstractions of the state
space, finding that knowledge gained at the abstract level can
be transferred between tasks. Konidaris and Barto [18] showed
that options (i.e., a particular sequence of actions) learned in
an agent-centric space can be transferred between tasks with
different environment-centric spaces. Fuzzy RL [19]–[22] can
also be applied to such a hierarchical framework [23], [24].

One alternative to hierarchical learning is imitation learn-
ing [25], which can allow knowledge transfer from a teacher
to a learning agent, though the agent is likely to dis-
cover only solutions that are similar to what they have
observed during demonstration [9]. Conn and Peters [26] and
Wang et al. [27] demonstrate how RL agents may learn from
human demonstration. A related approach (which is relevant
here) transfers knowledge to the agent in the form of an initial
policy [e.g., an initial table of Q(s, a) values to be used as a
starting point in learning]. For example, [28] and [29] provided
robots with a good generic policy, which the RL process then
adapted and optimized for specific situations. Pastor et al. [30]
derived this initial policy from human demonstration, but also
endowed their robot with the ability to record sensor readings
and predict future readings. These predictions were used as a
form of failure detection.

The recent work in [31] goes beyond using predictions for
failure detection. In their framework, the agent generates pro-
totypes (hypothetical experiences) based on past experiences in
source tasks, and uses these prototypes to accelerate learning
in a new, target task. Their particular framework applies only
when source and target tasks share a state space, but the core
idea of learning from predictions is highly relevant to our
work.

This paper focuses on transfer learning in RL, but we should
note that transfer learning is an important theme throughout all
branches of artificial intelligence. Chaturvedi et al. [32] imple-
mented deep transfer learning in an artificial neural network
in order to classify Gaussian networks with time-delays. They
propose to learn to classify high-dimensional networks using
previously trained low-dimensional subnetworks or “motifs.”
In their approach, Kullback–Leibler (KL) divergence [33] was

used to minimize the distance between source and target motifs
to transfer knowledge.

This paper considers RL knowledge transfer between tasks
that may have different environment-centric state spaces, but
share an agent-centric state space with semantics that remain
constant across tasks. Many researchers have approached
such situations by performing RL in the agent-centric and
environment-centric spaces separately. Whenever the agent is
in a novel environment-centric state, the agent-centric learning
system can provide an initial policy—the rationale being that
the agent-centric system has at least some knowledge of action
values given the current agent-centric state. For example,
our search-and-rescue robot has no initial environment-centric
knowledge at its first exposure to an unfamiliar building: a
situation that normally prompts a random exploratory action.
However, if the robot has learned agent-centrically that the
fire detected by its infrared cameras should be avoided, then
this knowledge can be transferred to the environment-centric
system as a low initial value for actions leading toward the fire
or, equivalently [34], as a “shaping” function which biases the
agent against moving toward fires.

This initial-policy approach has been implemented in
a variety of ways. Konidaris et al. [35] recently devel-
oped a general framework that transferred policies from
agent-centric to environment-centric systems in this way.
Banerjee and Sone [36] used a similar approach to transfer
knowledge between games. Guofang et al. showed that agents
could effectively learn from humans in an agent-centric space,
then transfer this knowledge to environment-centric space
by Q value initialization [37]. Mousavi et al. [38], [39]
also initialized Q values in target tasks to those from
source tasks where MDP homomorphism makes an explicit
mapping from source to target state—action pairs possible.
An interesting variation by Freire and Costa [40] and
Koga et al. [41], accelerates early learning by consulting
action values for environment-centric states in source tasks
that share the same agent-centric representation as the state
in the target task. Maron et al. [42] explored the concept of
“affordances,” an analog of agent-centric features applied to
object-oriented-MDPs, which accelerate environment-centric
learning by pruning the action set based on the current agent-
centric information.

The literature has demonstrated that Q value initializa-
tion or “shaping” is effective in some types of tasks. How-
ever, Q value initialization simply gives the agent a bias
for or against executing certain actions from a given state; it
tells the agent nothing about the consequences of those actions.
As we will show in this paper, information about actions’
consequences is important if the task requires learning a long
sequence of actions, or if the agent-centric information does
not clearly indicate an optimal action.

B. Predicting Consequences: New Opportunity
for Knowledge Transfer

Generating simple predictions about actions’ consequences
is critically important for biological agents. From low-level
brain circuits that predict future sensory input [43], [44]
to higher level learned associations between sensory input



CHALMERS et al.: LEARNING TO PREDICT CONSEQUENCES AS A METHOD OF KNOWLEDGE TRANSFER IN RL 2261

and predictable outcomes [45], the mammalian brain has an
extraordinary ability to make predictions. Indeed, even simple
actions like walking would be impossible without the brain’s
ability to predict body motion and position a short time into the
future [46]. Several recent developments in RL seem to have
been inspired by the importance of forecasting in biological
learning, and have combined RL with real-time predictions for
improved prosthetic control [47], novelty detection [48], and to
prove that a simple robot can produce thousands of real-time
predictions about its environment [49]. However, the utility of
predictions for knowledge transfer is yet to be explored.

C. Contribution of This Paper

Here, we propose an RL system in which an agent learns to
use agent-centric information to predict actions’ environmental
consequences—in much the same way as we might predict
where a doorway leads, or the consequences of drinking
a beverage that appears to be very hot. The agent learns
from these predictions as well as its real experiences in the
environment. This ability to predict then becomes an effective
way to transfer knowledge between any tasks that share a com-
mon agent-centric space. While prediction is a central theme
in machine learning generally, to our knowledge, no other
work has used predictions as a means of knowledge transfer
in RL.

We test the proposed approach in three domains: grid-
world-style navigation tasks, more complex spatial navigation
tasks involving a simulated robot, and a simple networking
problem unrelated to navigation. We show its applicability
to both model-free and model-based learning. We compare
with two other recent and representative methods designed for
the same class of problems—involving both agent-centric and
environment-centric information. The new prediction-based
approach to knowledge transfer shows faster convergence and
lower cost of learning in these tasks, even if the agent’s
predictions are occasionally erroneous. Our approach can be
used as a general framework for tackling problems with agent-
centric and environment-centric components.

II. ALGORITHM

We consider an agent exposed to a set of environments mod-
eled as MDPs. Borrowing some notation from [35], we write
the i th MDP in the set as

Mi =< Si , Ai , Pi , Ri , D > .

S is the set of environmental states defined on environment-
centric state variables. D is the agent-centric space, which
could be a set of distinct agent-centric states (D =
{d1, d2, d3 . . .}) or a continuous space created by n agent-
centric features (DεRn), but is defined consistently across
all tasks. The agent’s sensors map each state s in each
environment to an agent-centric state dεD. Knowledge transfer
is possible between related MDPs Mi and M j if they share a
nonempty agent-centric space.

We now make two important assumptions

Pi (s
′|a, s) = f (d, s, a)

r = g(d, a).

That is, individual transition probabilities and rewards
from state s can be estimated as a function of the
corresponding agent-centric state. This requires that the envi-
ronmental state space S have consistent dynamics (making
state transitions at least partially predictable) and that the
agent is equipped with sensors sufficient to allow the
predictions; though we will show that our approach is
advantageous even if transitions and rewards cannot always
be predicted perfectly. Navigation-style problems are a
good example of a domain fitting the above description.
In a navigation problem, the environment-centric state s
may encode the agent’s absolute location in the environ-
ment, while the agent-centric state d encodes the loca-
tion of roads, obstacles, and so on, relative to the agent.
Given an environment-centric state s (e.g., “10 m West,
5 m North, heading due East”), a sufficiently detailed agent-
centric state d (e.g., “obstacle to the right, all clear ahead”),
and an action a (e.g., “move forward 1 m”), the subsequent
environment-centric state can usually be predicted (“9 m West,
5 m North, heading due East”).

Kearns and Koller [50] discovered some time ago that,
for the many real-world problems in which transition prob-
abilities are predictable, this predictability can be exploited
to significantly reduce the computational complexity of RL
in a single environment. Here, we present a framework that
exploits predictability in the environment-centric space to
achieve knowledge transfer between environments that share
a common agent-centric space. The framework consists of
an environment-centric RL system, which learns to solve the
task Mi in the environment-centric space Si . This RL system
may be model-free or model-based an agent-centric learning
system (not necessarily RL), which learns to predict P(s′|a,s)
and r given s, d , and a.

The algorithm is illustrated in Fig. 1 and detailed in
Algorithm 1. The agent observes the current environment-
centric and agent-centric states, s and d . For each action a ε A,
the agent-centric learning system predicts the consequent
state s′ and reward r that will result if action a is executed from
state s. We denote these predictions as ŝ′ and r̂ . A predicted
state transition < s, a, ŝ′, r̂ > is then formed and used to
update the environment-centric RL system, as if the predicted
transition had actually happened. However, the update is
conditional on a predicate � , which we call the knowledge
transfer predicate.

ψ : (s, d, a) �−→{true, false}.
The knowledge transfer predicate helps ensure that predicted
transitions are used only when necessary, and when the predic-
tions are of reasonable quality. For example, � might evaluate
to true only when < s, a > is a novel state–action pair and
when < d, a > has been experienced before, or it may take
into account the confidence in the ŝ′ and r̂ predictions; the
exact implementation of � will likely depend on the nature
of the agent-centric learning system.

After knowledge has been transferred in the form of pre-
dicted transitions, the environment-centric RL system selects
an action a′ to perform. It is then updated using the result-
ing (real) transition < s,a’,s’,r >. A training observation for
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Fig. 1. Illustration of the proposed knowledge transfer approach. 1) After
observing the current agent-centric and environment-centric states, 2) the
agent-centric learning system predicts the consequences of each available
action. 3) The predicted transitions are used to update the environment-centric
system as if they actually occurred, ultimately allowing it to make a more
informed selection of an action to execute. The real transition resulting from
this action is used to update both learning systems.

the agent-centric system is also created, with s, d , and a′ as
inputs and s′ and r as targets.

Algorithm 1 is a learning meta-algorithm [51], which
relies on environment-centric and agent-centric components
of a designer’s choosing. The time complexity of the algo-
rithm will be a function of the complexity of these compo-
nents: the complexity of RL has been considered for both

Algorithm 1 Pseudocode for Knowledge Transfer in RL by
Predicting Actions’ Consequences
Inputs

A = {a1, a2, a3 . . .} : the set of allowed actions
Local

La : agent-centric learner
Le : environment-centric reinforcement learner
� : knowledge transfer predicate

Loop:
observe current states: d, s
Foreach action a ε A:
If �(s, d, a)

predict 〈ŝ′, r̂〉 = La(s, d, a)
update Le with predicted transition 〈s, a, ŝ′, r̂ 〉

select and execute action a′
observe new state and reward: s′, r
update Le with transition 〈s, a, s′, r〉
train La using inputs 〈s, d, a′〉 and outputs 〈s′, r〉

model-free [52], [53] and model-based cases [54], [55], though
the agent-centric learning system need not be RL-based at
all. In general, we simply note that the environment-centric
RL system is updated at least once and at most 1 + |A| times
each step, the knowledge transfer predicate is evaluated |A|
times per step, the agent-centric system generates at most
|A| predictions each step, and the agent-centric system is
trained or updated, at most, once per step.

III. TESTING

We tested the applicability of our approach in three example
situations: two from the navigation domain and one simple
network routing problem. We have made a deliberate effort to
implement the proposed transfer learning scheme somewhat
differently in each experiment, illustrating its versatility in
accommodating a variety of agent-centric and environment-
centric learning components, including model-free and model-
based approaches.

In each test, we compare with two other knowledge transfer
approaches from the literature. The first was proposed in [35]
in 2012 and performs agent-centric and environment-centric
RL separately. Q-values for novel environment-centric states
are initialized by transferring the values from the agent-centric
learner, given the associated agent-centric state. We will refer
to this method as “transfer by shared features,” in accordance
with this paper’s title.

The second comparison method was the best of a set of
methods proposed in [40] in 2015. Given an environment-
centric state with a corresponding agent-centric state, this
method identifies a set of environment-centric states from
previous tasks with the same agent-centric state. An “abstract
policy” is derived by building the set of actions that were opti-
mal in these other environment-centric states, and randomly
selecting one for execution. The abstract policy is invoked
at each step with a probability that decays linearly from
1 to 0 over the course of τ steps; the agent uses an ε-greedy
environment-centric policy otherwise. In our experiments we
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Fig. 2. Grid world environments used in the test. Blue patterns represent walls that the agent cannot traverse, green squares represent the goal state, and
red patterns represent lava that can be traversed with a large negative reward. The agent learned in the training environment before being evaluated in the test
environments, where the ability to transfer knowledge about affordances and risks of various world elements can accelerate learning.

used τ values of 100, 1000, 10 000, and 100 000, reporting
the best result (In every case, we found that the value of τ
had only a minor effect on performance). We will refer to this
method as “transfer by abstract policy.”

A. Example 1: Grid World Navigation

We first tested our proposed method in grid world simu-
lations (Fig. 2). The agent was allowed four actions corre-
sponding to stepping up, down, left, and right by one square.
The environment contained four distinct elements: open space,
walls, lava, and a single goal. Navigating through open space
triggered a reward of −0.01, attempting to navigate into a wall
resulted in no movement and a reward of −0.1, navigating
through lava triggered a reward of −1, and navigating into
the goal triggered a reward of +10 and teleported the agent
back to the start state.

At each step, the agent was informed of the x and y
coordinates of its current location in the environment (the
environment-centric state s) and was allowed to sense the four
directly adjacent cells, including their element type (the agent-
centric state d).

Agents were allowed to learn in a training environment
containing the four environmental elements described pre-
viously for 400 000 steps before being evaluated in three
novel test environments. Any environment-centric knowl-
edge was cleared during the transition between environments
(i.e., agents were informed of each task change). This test
was intended to test agents’ ability to agent-centrically learn
the affordances and dangers of various elements, and then
transfer this knowledge to accelerate learning in the new test
environments.

1) Algorithm Implementation: Algorithm 1 was imple-
mented as follows for the grid world environments. The
environment-centric reinforcement learner was implemented
as a Q learning algorithm [8]. The Q learning algorithm
maintained a table Q[s,a] of Q values for each state–action
pair. Actions were selected using an ε-greedy policy with
ε = 0.05, meaning that the agent selected a random action with
probability 0.05 and selected the action with the highest value
otherwise. Given a state transition < s,a,s’,r >, the Q value
for the corresponding state–action pair was updated as

Q[s, a] = Q[s, a] + α(r + γmaxa′ Q[s ′
, a′]−Q[s, a]) (2)

where the learning rate α was set to 0.2, and γ was set
to 0.9.

The agent-centric learning system was implemented as an
array of three independent Q learning algorithms that learned
to predict 	x (the change in x coordinate), 	y (the change
in y coordinate), and r resulting from taking action a from
agent-centric state d . This was accomplished by supplying the
Q learning algorithms with 	x , 	y, and r as reward signals,
as in [49] and [56]. Learning rates α were set to 0.2. All three
discount factors were set to γ = 0, so that the immediate 	x ,
	y, and r would be predicted; setting γ > 0 would cause the
predictions to extend a number of steps into the future [49],
a potentially interesting case considered in Section IV. The
predicted transition < s, a, ŝ′, r̂ > was constructed based
on the 	x , 	y, and r predictions. Note that any supervised
learning technique could be used in place of the three Q
learning algorithms.

Finally, tables Ta[d,a] and Te[s,a] were used to encode the
number of times each < d,a > and < s,a > state–action
pair was encountered. The knowledge transfer predicate was
implemented simply as

ψ(s, d, a) = (Ta[d, a] > ta) && (Te[s, a] > te). (3)

That is, predictions were only generated and used to transfer
knowledge if the agent had experienced agent-centric state d
more than ta times, and experienced the environment-centric
state s more than te times. The implementation with a model-
based environment-centric learner used ta = te = 1. The
implementation with Q learning as the environment-centric
learner used ta = 1 and te = 1000, since it was assumed that
the slower Q-learning algorithm would benefit from repetitive
knowledge transfer.

The transfer by shared features approach was imple-
mented using Q-learning algorithms for both agent-centric
and environment-centric components. The agent-centric
Q-learning algorithm used α = 0.1 and γ = 0.9, while the
environment-centric algorithm used α = 0.2 and γ = 0.9. The
transfer by abstract policy approach was implemented using
Q-learning with α = 0.2 and γ = 0.9.

2) Results: Figs. 3–5 show cumulative reward obtained by
agents in test environments 1, 2, and 3, respectively. In these
plots, the minimum value indicates the cost of learning, the
zero-crossing point indicates the time required to recoup the
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Fig. 3. Cumulative reward obtained by agents in the grid world test
environment #1.

Fig. 4. Cumulative reward obtained by agents in the grid world test
environment #2.

Fig. 5. Cumulative reward obtained by agents in the grid world test
environment #3.

cost of learning, and the asymptotic slope represents the
quality of the learned solution. The algorithm has converged
on a solution at the point where the curve converges to its
asymptotic slope. An RL algorithm has been categorically
outperformed if its cumulative reward plot is everywhere
dominated by that of another algorithm.

Fig. 6. Effect of prediction errors on cumulative reward in test
environment #1. While the simulated errors significantly affected the time
to convergence, the cost of learning was always lower than that in the no-
knowledge-transfer case. Error rates here represent the number of errors, rather
than their magnitude.

Our method of knowledge transfer using predictions
afforded significant advantages in terms of both time-to-
convergence (the number of steps spent in the environment
before the final solution is discovered, as evidenced by a
stabilization of the slope of the cumulative reward plot),
and cost of learning (the largest negative cumulative reward
reached during learning). In these tests, transfer by shared
features offered no significant benefits over the baseline no-
knowledge-transfer case. The reason for this will be considered
in Section IV.

3) Sensitivity to Prediction Accuracy: In practical appli-
cations, it may be impossible to predict P(s′|a,s) and r
with perfect accuracy. We thus tested the algorithm’s sen-
sitivity to imperfect predictions in the first test environment
(Fig. 2) by replacing the agent-centric system with a predictor
that generated perfect <ŝ′, r̂> predictions with a specified
probability, and random predictions otherwise. The random
prediction included a random reward r̂ ∼ U(−1, 0) and a
state ŝ′ randomly selected from one of the 9 states in a
3-by-3 box centered at the agent’s current location.
Fig. 6 shows the effects of 1%, 5%, 10%, 20%, and 30%
random predictions on cumulative reward. Note that these
error rates represent the number rather than the magnitude
of the simulated prediction errors; since the errors themselves
were randomly generated, some of them are catastrophic errors
(e.g., that moving into a wall is possible, or that moving into
the goal state is not), which causes the agent to behave in
highly suboptimal ways. Thus, this test likely represents a
worst case analysis.

Injecting prediction errors caused a significant drop in the
cumulative reward over 400 000 steps. The effect on perfor-
mance grew with the prediction error rate, with the difference
between 0% and 1% error being the most striking. Error rates
above 10% caused the agent to require more time than the no-
knowledge-transfer case to converge on the optimum solution.
However, even with error rates of 20% or 30%, the agent



CHALMERS et al.: LEARNING TO PREDICT CONSEQUENCES AS A METHOD OF KNOWLEDGE TRANSFER IN RL 2265

Fig. 7. Training and test environments used with the simulated Create robot.
The robot must learn to navigate to a colored beacon while avoiding walls.

converged to the optimal solution with a lower cost of learning
than the no-knowledge-transfer case.

B. Example 2: Simulated Robot Control

Although the grid worlds in the previous section provide
a straightforward problem with illustrative value, their state
transitions are purely deterministic and perfectly predictable,
making them somewhat unrealistic. We next tested the fea-
sibility of our approach in a more realistic problem wherein
transitions are stochastic and not perfectly predictable given
the agent’s sensor data, and wherein prediction errors would be
more realistic than those simulated in the previous sensitivity
analysis.

We tested our algorithm on a simulated iRobot Create
robot in a simple navigation learning task. This
test used the create robot simulator (obtained from
https://sourceforge.net/projects/createsim) to simulate a 4 m ×
4 m L-shaped enclosure (Fig. 7). The enclosure was
discretized into 15 x-coordinates, 15 y-coordinates, and
8 robot orientations θ , and the robot was allowed four actions
corresponding to moving forward, moving backward, turning
left, and turning right. It received a reward of −0.1 if it
collided with a wall and −0.05 for each action otherwise.
If it touched a colored goal beacon located on one of
the enclosure walls, it received a reward of +10 and was
relocated to the start state for another trial. The robot was
allowed to learn a good agent-centric prediction model by
solving the training problem 10 times before being tested
for 1 hour in the test environment. This learning task is an
uncomplicated problem in a simple simulated environment;
but since training and test tasks differ only in the location of
goal beacon, it effectively demonstrates how our knowledge
transfer method can facilitate learning multiple tasks in the
same environment.

Here, the environment-centric state variables included the
robot’s x and y coordinates and orientation θ . The agent-
centric state included four distance-to-wall readings from four
distance sensors oriented at 0°, 90°, 180°, and 270°, and a
Boolean value indicating whether the goal was currently in
view of a forward-facing camera.

It is noteworthy that because this test involves a discretiza-
tion of a continuous state space, there is inherent stochasticity
in the transitions, which makes them impossible to predict
with perfect accuracy. Because the state space is discretized

coarsely, two spatial locations for which action outcomes
are quite different can sometimes be interpreted as a single
discretized state: from the agent’s perspective, it seems as
though action outcomes from this state are stochastic.

When the agent confuses agent-centric states (either due to
the discretization effect, or because four distance sensors pro-
vide imperfect sensation of the environment) the agent-centric
model may produce a <s, a, ŝ′, r̂> prediction which—though
correct for the supposed agent-centric state—is incorrect for
the actual agent-centric state. These erroneous predictions
are an example of negative transfer, wherein inappropriately
transferred knowledge impedes learning.

The predictability of transitions is further degraded by the
low quality sensor data (four distance readings are often not
informative enough to predict collisions). This is in contrast
to the grid world setting, in which transitions are deterministic
and easily predicted based on the types of elements observed
in the agent-centric space. This test thus demonstrates the
applicability of our approach to situations where predictions
cannot be made with perfect accuracy.

1) Algorithm Implementation: The implementation of
Algorithm 1 for this setting used model-based RL as the
environment-centric learning algorithm [57]. The model-based
algorithm maintained a table of Q values, as well as a table
T[s,a,s’] to track the number of times action a from state s
resulted in a transition to s′, allowing transition probabilities
to be estimated as

P(s
′ |s, a) = T [s, a, s′]/

sumsx T [s, a, sx ].
Another table R[s,a,s’] tracked the average reward associ-

ated with the same transition. Q values may then be calculated
as

Q[s, a]=
∑

s ′
P(s, a, s′)(R(s, a, s′)+γmaxa′ Q[s ′

, a′]). (4)

Given a state transition < s,a,s’,r >, up to 200 Q values
were updated according to (4); the Q values to be updated
were selected using the prioritized sweeping algorithm [55].
These additional updates allow model-based RL algorithms to
learn faster with less experience than model-free algorithms
like Q learning. This advantage is important for applications
to robots and other real-world systems.

The agent-centric system used four Q-learning algorithms
as described previously to predict 	x , 	y, 	θ , and r . The
knowledge transfer predicate was defined as in Section III-A1)
with ta = 5 and te = 1. The parameter γ was set to 0.9.

The transfer by shared features approach was implemented
using the same model-based environment-centric algorithm as
our method, and the same agent-centric learning system as
in Example 1. The transfer by abstract policy approach used
the same model-based environment-centric algorithm as our
method.

2) Results: The test results are shown in Fig. 8. The
predictions generated by the agent-centric system during the
test were only 74% accurate, but still allowed the agent to
converge to a solution in less time than the no-knowledge-
transfer case. Transfer by abstract policy allowed the agent
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Fig. 8. Cumulative reward obtained by the robot in the test environment,
using the various knowledge transfer methods.

to converge to a solution even more quickly, but the solution
was highly suboptimal (in this case, the abstract policy did
not represent the optimal policy for the new environment).
Transfer by shared features was more hindrance than help;
these results, as well as those from the grid world tests, show
that knowledge transfer by shared features can fail in these
navigation-style problems. An explanation for this will be put
forward in Section IV.

C. Example 3: Transmission Routing
in a Wireless Mesh Network

We have thus far focused on navigation-style problems
where agent-centric and environment-centric spaces are per-
haps easiest understood, and become synonymous with ego-
centric and allocentric space. Our final example applies the
proposed approach to a problem with no spatial navigation
component.

We consider a network routing problem in which a number
of wireless sensor nodes are distributed across a large area.
Each node has a wireless link to several neighboring nodes,
but must “hop” messages through the network to communi-
cate with nodes beyond them. The quality of wireless links
between node pairs varies, and the cost (i.e., the time and/or
transmission power required) for a node to transmit to one
of its neighbors is a random variable parameterized by the
link quality. The task is to learn the lowest cost routing paths
between each pair of nodes.

To simulate this problem, we used the Havel-Hakimi algo-
rithm [58] to create a network of 64 nodes, each connected
to five neighbors. Each connection was assigned a randomly
generated quality indicator β, and the simulated cost of send-
ing a transmission through that connection was a random value
drawn from the beta distribution Beta (1, β). It is assumed that
the connections and link quality values are known a priori, but
that optimal routes must be learned as messages are passed
within the network. At each transmission, the reward received
is the negative of the transmission cost. There is an additional
+10 reward when a message arrives at its intended destination.

Fig. 9. Cumulative reward obtained in the network routing problem, using
the various knowledge transfer methods.

1) Algorithm Implementation: Here the environment-centric
state consists of the node at which a message currently resides,
and the intended destination node. The action set consists of
transmitting the message from the current node to one of its
five neighbors. The agent-centric state consists of the link
quality values associated with those neighbors, and a Boolean
indication of whether those neighbors are the destination node.

This test used a Q learning implementation of the
environment-centric learner, with α = 0.2 and γ = 0.9.
The agent-centric learner was a standard feedforward neural
network implemented using the MATLAB neural network
toolbox with one hidden layer of 10 neurons. This network was
trained every 1000 steps on a history of the 10, 000 most recent
transitions. This network learned to predict reward for each
transmission based on β parameters (the task of predicting
the next environment-centric state is trivial, since connections
are known a priori). The knowledge-transfer predicate allowed
predictions to be used after 1000 transmissions.

The transfer by shared features approach used the same
Q-learning environment-centric and agent-centric learning
algorithms as described in Example 1; the agent-centric
algorithm discretized β values into 50 bins to create a discrete
state space on which to operate. The transfer by abstract
policy approach also used the same Q-learning implementa-
tion described in Example 1, but when building an abstract
policy it considered each action individually: identifying
actions from other environment-centric states that shared the
same (binned) β parameter and were the optimal action from
their environment-centric state.

2) Results: The cumulative reward obtained by each method
is shown in Fig. 9. Transfer by shared features improves upon
the no-knowledge-transfer case, while the more recent transfer
by abstract policy provides further improvement. Transfer by
prediction converged to the optimal solution the fastest.

IV. DISCUSSION

We have proposed in this paper an RL algorithm that
includes both agent-centric and environment-centric learning
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Fig. 10. Example grid world situation: the agent (marked as “A”) is next to a
lava hazard and has already explored the states shaded gray. Using predictions
of actions’ consequences, the agent can correctly assign high values to moving
up and right, and lower values to moving left and down.

systems, and transfers knowledge between tasks in the form of
predictions about actions’ environmental consequences. The
agent-centric learning system can generate these predictions
in novel environments because agent-centric features maintain
a consistent definition and constant semantics across tasks.
These predictions can inform the environment-centric learning
system of actions’ effects before they are actually experienced,
facilitating faster and lower cost learning in both model-free
and model-based learning situations.

There is a subtle but important difference between our
prediction-based approach and the existing approach of using
agent-centric learning to provide shaping functions or initial
Q values: Shaping or Q value initialization can provide the
agent with a bias for or against executing certain actions
from a given state, but tells the agent nothing about the
consequences of those actions. Similarly, knowledge transfer
via abstract policies identifies actions that were optimal in
similar previous states, but not what the consequences of the
actions will be. Consider, for example, an agent exploring a
new grid world. Upon reaching the new environment-centric
state illustrated in Fig. 10, an agent-centric learner might
initialize Q values for the “up,” “right,” and “left” actions
to some low value (having learned that moving through open
space carries a minor negative reward) and the Q value for the
“down” action to some large negative reward (having learned
that moving into lava is undesirable). Similarly, an abstract
policy might identify each of the up, right, and left actions
as having been optimal in similar agent-centric states in the
past. The agent is left with no information about what it
should do, except perhaps that it should not move down. This
could actually be worse than the no-knowledge-transfer case,
in which an optimistic initialization would at least push the
agent toward unexplored territory. In contrast, our proposed
method allows the agent in Fig. 10 to predict the results as
follows.

1) Executing the “left” action will move it left by one
space (undesirable, because that space has already been
explored).

2) Executing the “down” action will take it onto the lava
with a large negative reward.

3) Executing the “up” and “right” actions will take it into
novel states (desirable because the optimistic initializa-
tion assigns high value to the untried actions in those
states).

Thus the agent-centric system’s predictions inform the agent
about the value of various actions, given their consequences.

We expect that our proposed method of using predic-
tions to transfer knowledge will be advantageous whenever
there are many actions to be executed before obtaining a
reward, or when the agent-centric space does not directly
indicate how the reward should be obtained. If, however, there
are few actions to be executed before reaching a goal, or if
the agent-centric space does specify the “direction” of the
reward, then using Q value initialization or abstract policies
would be effective means of knowledge transfer as illustrated
by [35] and [40].

Our proposal of using predictions for knowledge transfer
builds upon the previous work in RL. In particular, it is an
extension of the established fact that if a transition func-
tion is predictable (and therefore can be represented by a
compact model) the computational complexity of RL can be
reduced [50]. We also note that exploitation of predictability
in an MDP is already widespread in the use of function
approximation [8], which inherently assumes that Q values can
be predicted using a compact function of the state variables.

The efficacy of this proposed knowledge transfer method
depends on the accuracy of the agent-centric system’s pre-
dictions. We noted in Example 2 that our simulated robot
had only four distance sensors, and that their instantaneous
readings did not allow very accurate predictions. However,
more accurate predictions may be possible if these sensors’
readings over time could be used to create a more detailed map
of obstacles (i.e., by a simultaneous localization and mapping
system [59]). Thus, using predictions for knowledge transfer
imposes no requirements on sensor cost or quality; only on
prediction accuracy.

A few catastrophic prediction errors are likely more detri-
mental than constant, mild errors. To help prevent very bad
predictions, the future work should connect our concept of
the knowledge transfer predicate � , to work on “knows what
it knows” RL [60]–[62], a field of research that gives agents
the ability to estimate when their experience with a particular
state or action is sufficient to allow an action value to be calcu-
lated. The estimation is performed in a statistically sound way,
so that the risk of calculating a value prematurely is arbitrarily
minimized. Such methods could be used to determine when
the agent-centric system can and cannot confidently provide a
meaningful prediction, and could be an effective alternative to
our simple � implementation.

Erroneous predictions can result from insufficient experi-
ence, inadequate agent-centric model capacity, or negative
transfer. The first two problems can be addressed through
the design of � and the agent-centric model, but a negative
transfer may be a bigger challenge: Taylor and Stone [10]
call it “one of the most troubling open questions” for transfer
learning in RL. Negative transfer can occur in our framework
whenever the agent confuses two agent-centric states, thus
applying a prediction (which is correct in the source state)
to a target state that has been misidentified. There is no trivial
solution to this problem, but we note that this kind of negative
transfer is precluded in the first experiment (Section III-A),
because in that experiment the agent is allowed to sense the
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agent-centric state perfectly. Thus, avoiding negative transfer
in our framework is at least partly an issue of sensor quality,
and of agent-centric feature space design.

Our method facilitates knowledge transfer between tasks
that share an agent-centric space, and our experiments demon-
strate its advantages over other methods proposed for this
particular situation. Transfer in other situations (between tasks
that share a transition or reward function, for example) would
be best accomplished using other methods, some of which
are reviewed in [10]. Therefore, the use of predictions for
knowledge transfer should ultimately be combined with other
existing knowledge transfer methods. For example, our method
could be used within the skill learning and transfer frame-
work [14], or the state-abstraction scheme of [15] or [17]. Our
framework continuously transfers small amounts of knowledge
from the agent-centric to the environment-centric systems, but
it could potentially be combined with a framework such as that
used by Chaturvedi et al. [32], who used KL divergence [33]
to identify appropriate times to transfer larger portions of a
complete model. Indeed, biological agents probably achieve
fast and flexible learning by employing a variety of knowledge
transfer mechanisms in concert.

Another important direction for future research will be
the generalization of our proposed method beyond the MDP
model, to the partially observable MDP (POMDP) model.
In the POMDP paradigm, the agent is not directly aware of
its state, but instead makes observations from which it derives
a belief over states. This paradigm could be advantageous
in situations like that in Example 2, where our robot is not
truly aware of its exact state. The principle of transferring
knowledge by predicting state transitions could be generalized
by instead predicting changes in the belief state. However,
this may be best approached within an existing approximate
POMDP solution framework [63]–[65]. We leave the algorith-
mic realization of this proposal to the future work.

Finally, the concept of learning from predictions opens
up interesting possibilities for learning from extended pre-
dictions or predicted trajectories. For example, if a robot
could predict multiple steps into the future, it could “explore”
a large space instantly through predictions and update
action values accordingly: this prediction capability could
save enormous amounts of time if, for example, the space
was represented as a finely discretized occupancy grid.
Konidaris et al. [18], [35] have pointed out the value of
learning macroactions or “options” in an agent-centric space.
Learning from predictions presents a possibility of learning
options as extended predictions with promising outcomes.

V. CONCLUSION

As humans, we routinely and intuitively make predictions
about the consequences of our actions. We can predict what
will happen if we walk through a puddle instead of walking
around, or the consequences of sleeping late on an important
day at work. When we see an elevator, we predict that it will
transport us to another floor in the same building. Predictions
help guide our behavior and our learning in new situations.

We have proposed a new, prediction-based approach to
knowledge transfer in RL, in which an agent-centric system

learns to predict actions’ environmental consequences. Since
this agent-centric system can be applied to any scenario where
its predictions are valid, our approach can provide an effective
means of knowledge transfer and can accelerate RL in new
scenarios. Using several types of test problems involving both
agent-centric and environment-centric information, we have
demonstrated that our approach can perform more effectively
in such problems than existing alternatives.
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