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Abstract

In this paper, a number of different versions of the basic calculus of constructions
that have appeared in the literature are compared and the exact relationships be-
tween them are determined. The biggest differences between versions are those be-
tween the original version of Coquand and the version in early papers on the subject
by Seldin. None of these results is very deep, but it seems useful to collect them in
one place.
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1 Introduction

Since Coquand first introduced the calculus of constructions in [1–5], there
have been a number of different versions of the system published. Of the
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versions published by Coquand himself, one appears in [1,4,5], and another
appears in [2], and still another appears in [3]. One of the most distinctive
versions in the literature is due to Seldin, which differs from the others in
some important ways. Seldin had first learned of the calculus of construc-
tions in early 1986, when he was working for Odyssey Research Associates.
Richard Platek, who was then president of that company, had hired Seldin to
work on a project that involved using some version of typed λ-calculus with
the propositions-as-types notion to develop a very general system for formal
verification [6], and the first task he assigned Seldin was to choose the best
version of typed λ-calculus. As part of the process of choosing, Platek and
Seldin visited Carnegie-Mellon University in early 1986 to see both Coquand
and Huet, who were visiting there at the time. At this time, only the earliest
papers of Coquand and Huet had appeared: [1,4], the latter in preprint form.
As a result, it seemed to Seldin that the definition of the system was was
subject to modification. Furthermore, a major part of the project on which
he was working required formal proofs of consistency (see [6, Introduction]),
and Seldin was thus led to reformulate the system in a form in which he could
use familiar tools for the proof of consistency: the form of Curry’s theory of
functionality (his name for type assignment), which he considered a part of
illative combinatory logic, and the proof-theoretic tools of Gentzen [7], espe-
cially as developed by Curry [8,9], and Prawitz [10]. Seldin also wanted to
allow for the possibility of assumptions other than those assigning types to
variables; he thought that such assumptions might be useful, for example in
dealing with the possibility of subtyping, which Curry had postulated by tak-
ing the assumption I : α → β or λx . x : α → β, where α �≡ β; see [11, Remark
2, p. 23] and [12, pp. 97–99]. Seldin was thus led to systems significantly more
general than the original formulation of Coquand and Huet. Originally, Seldin
did not think these differences were terribly important, and he continued to
use these versions in [6,13,12,14–16]. Recently, however, Seldin has been asked
on several occasions about the exact relationship between his versions and the
other ones.

After Coquand introduced the calculus of constructions, Berardi [17] and Ter-
louw [18] introduced the concept of a PTS as a generalization of the GTSs of
the Barendregt cube (see [19]). A comparison of the definition of a PTS to
the definitions of the original versions of the calculus introduced by Coquand
shows that the latter is a special case of the former. More recently, Bunder and
Dekkers have been studying variants of PTSs for the purpose of comparing
them with systems of illative combinatory logic [20] (see also [21] and [22]),
and as a result the exact differences between these different formulations now
seem more important. The purpose of this paper is to study these different
formulations of the calculus of constructions and to compare them.

Some of these results are new, some have appeared elsewhere, of these some
have been proved for PTSs in general. It seems useful to collect in one place
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those that apply to the calculus of constructions.

These different formulations have some things in common, namely the terms
and forms of judgments, the axiom, and the form of the application and prod-
uct rules. They may differ in the form of the rule(s) for conversions of types,
in the form of the abstraction rule, and whether assumptions are sequences
and can only be introduced by rules, or are sets and can be arbitrary. Both
kinds are natural deduction systems; the latter are more like those that have
appeared in the work of Gentzen [7] and Prawitz [10]. Which of these ver-
sions one wants will depend on one’s purpose. If one has a purpose for which
typechecking is important, one will probably prefer one of the P or A ver-
sions below with sequences for assumptions, whereas if one wants to obtain
consistency proofs or obtain other proof-theoretic results, one of the C or AC
versions below with sets of assumptions may be more useful. We hope that
the results of this paper will help researchers make this choice.

There are different kinds of extensions of the calculus of constructions that we
do not consider here: the extended calculus of constructions [23,24], the calcu-
lus of constructions with inductive types [25,26], the calculus of constructions
with rewriting [27–33], the calculus of constructions with η-reduction [34,35],
and the calculus of constructions as a domain-free pure type system [36]. This
is because the different variants we deal with here could be defined for all of
these systems, and there are so many of them that considering them all would
make the paper much, much longer. Furthermore, in the case of the calculus
of constructions with rewriting, new versions are appearing so quickly that it
would be difficult to keep up. For this reason, in this paper we are concerned
only with the basic calculus of constructions.

We would like to thank the anonymous referees for their helpful comments
and suggestions.

2 The different variants

All of the formulations are based on the following syntax for pseudoterms :

M ::= x|c|Prop|Type|(λx : M . M)|(MM)|(Πx : M . M)

The reduction relation is β-reduction, where the basic contraction rule is

(β) (λx : A . M)N � [N/x]M,
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where [N/x]M denotes the substitution of N for all occurrences of x in M
with bound variables being changed as necessary to avoid collision. The cor-
responding conversion relation will be written

M =β N.

(We do not consider η-reduction or conversion.) The two constants Prop and
Type are called sorts. (They are called kinds in [2] and earlier papers by
Seldin.) Unspecified sorts will be denoted here by s, s′, etc., so we always
have s, s′, . . . ∈ {Prop : Type}. Formulas (called statements in PTSs) are of
the form M : A, where M and A are pseudoterms. All of the versions have
the same axiom:

(PT) � Prop : Type.

In some formulations, judgments are of the form Γ � E, where Γ is a sequence
of assumptions x1 : A1, x2 : A2, . . . , xn : An, and E is a formula. In systems of
this kind, Γ is regarded as legal if and only if it is possible to prove Γ � E
for some formula E. 3 Furthermore, assumptions can only be introduced on
the left of � by a rule such as

Γ � A : s
Γ, x : A � Prop : Type,

where x �∈ FV(Γ, A), i.e., x does not occur free in Γ or A. Formulations of this
kind are similar to the original formulation of Coquand [1], or equivalently, [5],
(which is equivalent to the system called TOC2P below), and a formulation
of this kind was called TOC2 by Garrel Pottinger [37]. Hence, in this paper,
systems of this kind will be called “TOC2-like”. (TOC stands for “Theory of
Constructions.”)

In others judgments are of the form ∆ � E where ∆ is a set of formulas
and E is a formula. Here, any premises of the form M : A are possible. In
these systems, a set of assumptions which assign types to distinct variables
is considered legal if it can be ordered in a sequence in such a way that the
assumptions can be discharged by the rules of the system in reverse order.
Systems of this kind will be called “TOC0-like”.

In what follows, the names of these systems will be obtained from “TOC0” or
“TOC2” by adding letters, “P”, “A”, and “C”. The addition of “P” will refer to
a system whose abstraction and conversion rules are essentially those of a PTS;

3 This is equivalent to Γ � Prop : Type.
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the addition of “A” will indicate a system with a modified abstraction rule,
such as the systems λω(S) of [38], and the addition of “C” will denote a system
with a modified rule of conversion between types. If both the abstraction and
conversion rules are modified, “AC” will be added to the name. The original
TOC0 of Seldin [6,13,12,14–16] is, in this notation, TOC0AC. 4

As we shall see below, TOC0-like systems and TOC2-like systems with the
same letters on the end are equivalent. We shall give below the exact relation-
ships between “P”, “A”, “C”, and “AC” formulations.

3 P-versions: PTS like systems

Let us start with the TOC2-like P version.

Definition 1 The system TOC2P is a system of the above kind with se-
quences of assumptions. The axiom is (PT). The rules are as follows:

(Validity) Γ � A : s
Γ, x : A � Prop : Type

Condition:
x �∈ FV(Γ, A)

(Variable) Γ1, x : A, Γ2 � Prop : Type
Γ1, x : A, Γ2 � x : A

(Product) Γ, x : A � B : s

Γ � (Πx : A . B) : s
Condition:
x �∈ FV(Γ, A)

(Abstraction)Γ, x : A � M : B Γ, x : A � B : s

Γ � (λx : A . M) : (Πx : A . B)
Condition:
x �∈ FV(Γ, A)

(Application) Γ � M : (Πx : A . B) Γ � N : A

Γ � MN : [N/x]B

(Conversion) Γ � M : A A =β B Γ � B : s

Γ � M : B

4 Actually, it is a slight generalization; see Remark 43 in §4 below.
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A sequence Γ of formulas assigning types to variables is legal if it is possible
to prove Γ � E for some formula E.

Remark 2 The condition on (Validity) could be changed to read “x �∈ FV(Γ)”
and the conditions on rules (Product) and (Abstraction) could be dropped. If
we define dom(Γ) to be {x1, x2, . . . , xn} when Γ ≡ x1 : A1, x2 : A2, . . . , xn : An,
then the condition on (Validity) could be changed to read “x �∈ dom(Γ).” This
is because [19, Lemma 5.2.8] (the free variable lemma) can be proved for this
system; see Lemma 8 below. However, this lemma fails for the systems TOC2C
and TOC2AC, which are considered later in the paper. For this reason, we
are retaining these conditions explicitly as stated in all the formulations we
consider.

Remark 3 TOC2P is a restriction of the system called TOC2 in [37,13].
Seldin [6,13,12,14–16] writes (∀x : A)B and others write (Πx : A)B for (Πx :
A . B). In PTSs, it is standard to use ∗ for Prop and � for Type.

Remark 4 The system of Coquand [2] is a TOC2P system. The earlier sys-
tems of [1,4,5] of Coquand (and Huet) are equivalent to this, but Type is not
written explicitly, � M is written for � M : Type, and ∗ is used for Prop.
The fact that Type is not expressed explicitly makes the second premise of the
rule (Abstraction) automatically true, and hence it is easy to prove their equiv-
alence by induction on the proofs. Coquand is really the first to formulate the
calculus of constructions as a TOC2P system.

The version in [3], is special in several respects:

(1) Type is not a constant, but a special judgment type is introduced for for-
mulas involving Type, so that M type [Γ] is the judgment that replaces
Γ � M : Type.

(2) There is a type operator T such that if Γ � M : Prop, then Γ � T(M) :
Type (in the standard notation). Also, there is a separate universal quan-
tifier with the property that T((∀x : A)B) plays the role of (Πx : A . B).
Thus, (∀x : A)B might be in Prop, while (Πx : A . B) can only be in Type
(in the notation of this paper). (Coquand wrote (x : A)B and (∀x : A)B
for our (Πx : A . B) and (∀x : A . B).

(3) There is a judgment Γ valid that takes the place of Γ � Prop : Type.
(4) Coquand writes M : A [Γ] for our Γ � M : A.

Remark 5 Garrel Pottinger, in [37], defined a variant that he called TOC1.
It is obtained from TOC2P by omitting the rules (Validity) and (Variable) and
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postulating instead the following two rules:

(Hypothesis) Γ � A : s
Γ, x : A � x : A

Condition:
x �∈ FV(Γ, A)

(Reiteration) Γ � E Γ, F � G

Γ, F � E
Condition:
E, F , and G are formulas

This is shown equivalent to TOC2P in [37]. (The rules (Hypothesis) and (Re-
iteration) are versions of the corresponding rules of Fitch [39]. The condition
on the variable x in the rule (Hypothesis) could be omitted and/or modified as
indicated in Remark 2.)

Remark 6 A standard PTS replaces (Validity) and (Variable) by

(Start) Γ � A : s
Γ, x : A � x : A

Condition:
x �∈ FV(Γ, A)

(Weakening) Γ � M : B Γ � A : s
Γ, x : A � M : B

Condition:
x �∈ FV(Γ, A)

(Start) is the same as (Hypothesis). We prove that (Reiteration) is equivalent
to (Weakening) if the other rules of TOC2P are present. The conditions on
the variable x in these two rules could be omitted and/or modified as indicated
in Remark 2.

Lemma 7 Any deduction of Γ1, x : A, Γ2 � M : B in TOC2P has a subde-
duction of Γ1 � A : s for some s.

PROOF. By induction on the deduction of Γ1, x : A, Γ2 � M : B. �

The following is [19, Lemma 5.2.8].

Lemma 8 If Γ ≡ x1 : A1, x2 : A3, . . . , xn : An is legal and Γ � M : A in
TOC2P for some M and A, then

(1) The variables x1, x2, . . . , xn are all distinct,
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(2) FV(MA) ⊂ {x1, x2, . . . , xn}, and
(3) FV(Ai) ⊂ {x1, x2, . . . , xi−1} for 1 ≤ i ≤ n.

PROOF. By induction on the derivation of Γ � M : A. �

Lemma 9 In TOC2P, if

Γ � M : B (1)

and

Γ � A : s, (2)

then

Γ, x : A � M : B. (3)

PROOF. In the derivation of (1), each step in which Γ is formed on the left
of � takes the form

Γ′ � C : s1

Γ � Prop : Type
(Validity)

where Γ ≡ Γ′, y : C for y �∈ FV(Γ′, Cx). Each such step and any deriva-
tion above it can be replaced by the derivation of (2) and an application of
(Validity). The result will be a derivation of

Γ, x : B � Prop : Type.

The remaining steps of the derivation of (1) can now be carried out with
Γ, x : B in place of Γ and some changes of variables free in some steps but not
in the conclusion, leading to a derivation of (3). �

Lemma 10 TOC2P has the same valid judgments when (Validity) and (Vari-
able) are replaced by (Start) and (Weakening).

PROOF. By Remark 5, it is enough to show that (Weakening) and (Reiter-
ation) are equivalent.
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Suppose the basic rule is (Reiteration), and suppose we have deductions of

Γ � M : B and Γ � A : s.

By Lemma 9, (Weakening) is valid in TOC2P.

Conversely, suppose we are given

Γ � E and Γ, F � G.

By an easy induction on the deduction of Γ, F � G, F must have the form
x : A, where x �∈ FV(Γ, A). By Lemma 7 Γ � A : s, so by Γ � E and
(Weakening), we have Γ, F � E, which is the conclusion of (Reiteration). �

Remark 11 The rule (Product) is also not exactly the one in the PTS format.
The PTS version is

(PTSProduct) Γ, x : A � B : s2 Γ � A : s1

Γ � (Πx : A . B) : s3

Condition:
x �∈ FV(Γ, A)

where (s1, s2, s3) ∈ R. The set R for the calculus of constructions is

{(Prop, Prop, Prop), (Prop, Type, Type), (Type, Prop, Prop), (Type, Type, Type)}.

By Lemma 7, (PTSProduct) simplifies to (Product) in the calculus of con-
structions. By Remark 2, the condition on x could be omitted.

Remark 12 Even with (Validity) and (Variable) replaced by (Start) and (Weak-
ening) and realizing that (Product) is essentially (PTSProduct), TOC2P is not
quite a PTS. In a PTS, the rule (Abstraction) would be replaced by

(PTSAbstraction) Γ, x : A � M : B Γ � (Πx : A . B) : s

Γ � (λx : A . M) : (Πx : A . B)
Condition:
x �∈ FV(Γ, A)

In some PTSs, these are not equivalent, but in the calculus of constructions
they are. By Remark 2, the condition on x could be omitted.

Lemma 13 TOC2P has the same valid judgments when (Abstraction) is re-
placed by (PTSAbstraction).
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The proof requires the following lemma:

Lemma 14 If

Γ � (Πx : A . B) : C,

in TOC2P, then

Γ, x : A � B : s and C =β s

in TOC2P.

Remark 15 This is a special case of Barendregt’s Generation Lemma for
PTSs; see [19, Lemma 5.2.13].

PROOF. By induction on the derivation of Γ � (Πx : A . B) : C, where, in
each case, the last inference which is not by rule (Conversion) is considered. �

Proof of Lemma 13 By Lemma 14, we immediately get

Γ � (Πx : A . B) : s ⇐⇒ Γ, x : A � B : s.

�

The remarks and lemmas we have had so far give us

Theorem 16 TOC2P has the same valid judgments as the PTS λC of Baren-
dregt [19].

Now for the TOC0-like P version.

Definition 17 The system TOC0P is a system of the above kind with sets of
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assumptions. The rules are as follows, where s ∈ {Prop, Type}:

(Axiom) ∆ � Prop : Type

(Assumption) ∆ � M : A Condition: M : A ∈ ∆

(ss′F) ∆ � A : s ∆, x : A � B : s′

∆ � (Πx : A . B) : s′
Condition:
x �∈ FV(∆, A)

(Πsi) ∆, x : A � M : B ∆, x : A � B : s ∆ � A : s′

∆ � (λx : A . M) : (Πx : A . B)

Condition:
x �∈ FV(∆, A)

(Πe) ∆ � M : (Πx : A . B) ∆ � N : A

∆ � MN : [N/x]B

(Eq′′′) ∆ � M : A A =β B ∆ � B : s

∆ � M : B

Remark 18 If ∆ is a well-formed environment (Definition 21 below), then
so is ∆, x : A provided x �∈ FV(∆, A). The rule (Weakening) is admissible for
this system (and for all TOC0 systems considered in this paper) because extra
formulas assigning types to variables can always be added to any judgement
in a deduction without affecting the validity of its inferences as long as the
conditions on the occurrence of free variables are not violated.

Remark 19 It is one of the general conventions of this kind of system that if
D1(x) is a deduction whose conclusion is

∆, x : A � M : B

where x �∈ FV(∆, A), and if D2 is a deduction whose conclusion is

∆ � N : A,
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then

D2

∆ � N : A
D1(N)

∆ � [N/x]M : [N/x]B

is the deduction obtained from D1(x) by substituting N for x, replacing every
occurrence of ∆′, x : A � x : A which is the conclusion of (Assumption) in
D1(x) by ∆′ � N : A and placing D′

2 above that (noting that ∆ ⊂ ∆′, since
the rules of the system allow assumptions to be discharged but not introduced),
where D′

2 is obtained from D2 by the process justifying the rule (Weakening)
as described in Remark 18 above.

Remark 20 In earlier works by Seldin [6,13,12,14–16], this definition would
be given in the style of Prawitz [10]. The axiom (PT) would be given in the
form

Prop : Type

The last four rules would be stated as follows:

(ss′ F)
A : s

[x : A]
B : s′

(Πx : A . B) : s′

Condition: x does not
occur free in A or
in any undischarged
assumption.

(Πsi) [x : A]
M : B

[x : A]
B : s A : s′

(λx : A . M) : (Πx : A . B)

Condition: x does not
occur free in A or
in any undischarged
assumption.

(Πe) M : (Πx : A . B) N : A

MN : [N/x]B

(Eq′′′) M : A A =β B B : s

M : B

If ∆ is a set of assumptions, then ∆ � M : A holds in this formalism if there
is a deduction whose last formula is M : A and in which every undischarged
assumption occurs in ∆. By this definition, rules (Axiom) and (Assumption)
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of Definition 17 follow by the conventions of this method of giving natural
deduction rules.

It is possible to have sets of assumptions in TOC0P that do not correspond
to legal sets of assumptions in Definition 17. However, if we want to be able
to discharge assumptions, they must all assign types to variables, we need to
take them in a certain order, and they need to satisfy certain conditions.

Definition 21 A set of assumptions ∆ is a well-formed environment with
respect to a TOC-system S if all of its assumptions assign types to variables
and they can be ordered in a sequence

x1 : A1, x2 : A2, . . . , xn : An

such that the variables x1, x2, . . . , xn are all distinct and the following condi-
tions hold for each i, 1 ≤ i ≤ n:

(1) xi does not occur free in A1, . . . , Ai (but it may occur free in Ai+1, . . . , An),
and

(2) x1 : A1, x2 : A2, . . . , xi−1 : Ai−1 � Ai : s for some s in S.

This sequence will be called a well-formed sequence with respect to S. (Such
sequences are called “S-legal” in the rather similar SPTSs of [21].)

We need some results on well-formedness with respect to TOC2P.

Lemma 22 If Γ � E in TOC2P for any formula E, and if Γ′ is any initial
segment of Γ (possibly Γ itself), then each derivation of Γ � E contains a
subderivation of Γ′ � Prop : Type.

PROOF. By induction on the proof of Γ � E. �

Lemma 23 If Γ � Prop : Type in TOC2P, then Γ is a well-formed sequence
with respect to TOC2P.

PROOF. By induction on the pair 〈n, m〉, where n is the number of assump-
tions in Γ and m is the length of the derivation of Γ � Prop : Type.

Basis: Trivial, since Γ is empty.

Induction step: Assume the lemma for any initial subsequence of Γ, and sup-
pose that Γ is Γ′, x : A. Then Γ � A : s for some sort s by Lemma 7.
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Lemma 24 If Γ � E in TOC2P, then Γ is a well-formed sequence with re-
spect to TOC2P.

PROOF. Lemmas 3 and 23. �

Lemma 25 If Γ is a well-formed sequence with respect to TOC2P, then Γ � Prop :
Type in TOC2P.

PROOF. If Γ is the empty sequence, the result is trivial by axiom (PT). If Γ
is not empty, it is Γ′, x : A. By condition 1 of Definition 21, x does not occur
free in Γ or in A. By condition 2 of Definition 21, we have in TOC2P

Γ′ � A : s.

The lemma follows by rule (Validity). �

Corollary 26 Γ is a well-formed sequence with respect to TOC2P if and only
if Γ � E for some formula E (i.e., if and only if Γ is legal with respect to
TOC2P).

PROOF. By Lemmas 23 and 25. �

We can now prove the equivalence of TOC0P and TOC2P. For purposes of this
proof, we will write Γ �2 E to indicate that Γ � E is provable in TOC2P,
and we will write ∆ �0 E to indicate that ∆ � E is provable in TOC0P. If Γ
is a sequence of assumptions, we will write {Γ} for the set of those assumptions
in Γ, and we will write Γ �0 E for {Γ} �0 E.

Theorem 27 If

Γ �2 E, (4)

then

Γ �0 E. (5)

PROOF. By induction on the derivation of (4).

Basis: (4) is (PT) in TOC2P. Then Γ is empty, E is Prop : Type, and (5) holds
by rule (Axiom) in TOC0P.
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Induction step: The cases are by the last rule in the derivation of (4).

Case (Validity). Trivial by rule (Axiom).

Case (Variable). Trivial by rule (Assumption).

Case (Product). E is (Πx : A . B) : s, where x does not occur free in Γ or in
A, and the premise is

Γ, x : A �2 B : s.

By the induction hypothesis,

Γ, x : A �0 B : s.

Furthermore, by Lemma 7,

Γ �2 A : s′.

By another application of the induction hypothesis,

Γ �0 A : s′,

and (5) follows by (ss′F).

Case (Abstraction). Similar to Case (Product) using (Πsi).

Case (Application). E is MN : [N/x]B, and the premises are

Γ �2 M : (Πx : A . B) and Γ �2 N : A.

By the induction hypothesis

Γ �0 M : (Πx : A . B) and Γ �0 N : A,

and (5) follows by (Πe).

Case (Conversion). Trivial by rule (Eq′′′). �

Theorem 28 If ∆ is a well-formed environment with respect to TOC0P, and
if

∆ �0 E, (6)
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then there is a sequence Γ such that {Γ} is ∆ and (4) holds.

PROOF. By induction on the sum of the length (number of formulas) of the
proof of (6) plus the subsidiary proofs that ∆ is a well-formed environment.
the latter case also proves that {Γ} is a well-formed environment (with respect
to TOC0P). The cases are by the last rule applied in the deduction of (6).

Case (Axiom). E is Prop : Type. If ∆ is empty, (4) is an instance of the axiom
(PT). If ∆ is not empty, it is ∆′, x : A. Since ∆ is well-formed with respect
to TOC0P, let Γ be the corresponding well-formed sequence with respect to
TOC0P. Then Γ will be Γ′, x : A, where Γ′ is the sequence corresponding to ∆′.
By condition 1 of Definition 21, x �∈ FV(Γ′, A). By condition 2 of Definition 21,
Γ′ �0 A : s. By induction hypothesis, Γ′ �2 A : s, and an application of rule
(Validity) gives us (4).

Case (Assumption). E is M : A, where M : A ∈ ∆. If ∆ is a well-formed
environment, then M : A is xi : Ai for some i (1 ≤ i ≤ n), where ∆ ≡ {x1 :
A1, x2 : A2, . . . , xn : An}, xi does not occur free in A1, A2, . . . , Ai−1, and

x1 : A1, x2 : A2, . . . , xi−1 : Ai−1 �0 Ai : s.

By the induction hypothesis,

x1 : A1, x2 : A2, . . . , xi−1 : Ai−1 �2 Ai : s,

which is (4) with Γ ≡ x1 : A1, x2 : A2, . . . , xi−1 : Ai−1.

Case (ss′F). E is (Πx : A . B) : s′, where x �∈ FV(∆, A). The premises are

∆ �0 A : s and ∆, x : A �0 B : s′.

It follows that ∆, x : A is well-formed with respect to TOC0P, and the cor-
responding sequence is Γ, x : A, where {Γ} is ∆, and so by the induction
hypothesis,

Γ, x : A �2 B : s′.

then (4) follows by (Product).

Case (Πe). E is MN : [N/x]B, and the premises are

∆ �0 M : (Πx : A . B) and ∆ �0 N : A.
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By the induction hypothesis, there is a well-formed sequence Γ such that {Γ}
is ∆ and

Γ �2 M : (Πx : A . B) and Γ �2 N : A.

Then (4) follows by (Application).

Case (Πsi). E is (λx : A . M) : (Πx : A . B), and the premises are

∆, x : A �0 M : B, ∆, x : A �0 B : s, ∆ �0 A : s′,

where x �∈ FV(∆, A). By the induction hypothesis, there is a well-formed
sequence Γ such that {Γ} is ∆, and, since it also follows that ∆, x : A is
well-formed, {Γ, x : A} is ∆, x : A, and x �∈ FV(Γ, A), and, in addition,

Γ, x : A �2 M : B and Γ, x : A �2 B : s.

Then (4) follows by (Abstraction).

Case (Eq′′′). Trivial by (Conversion). �

Corollary 29 A sequence Γ is well-formed with respect to TOC0P if and only
if it is well-formed with respect to TOC2P.

4 A-versions: relaxing the abstraction rule

The A-versions of these systems are obtained from the P-versions by omit-
ting the second premise from the abstraction rule (rule (Abstraction) in the
TOC2-like version and rule (Πsi) in the TOC0-like version). Paula Severi [38]
has studied variants of PTSs with this change; she calls them “PTSs without
the Π-condition.” If λ(S) is a regular PTS with specification S, then Severi
calls the corresponding PTS without the Π-condition λω(S). Similar variants
are considered by van Benthem Jutting, McKinna, and Pollack [40], in par-
ticular with respect to the conditions under which they are equivalent to the
corresponding ordinary PTSs.

Definition 30 The system TOC2A is obtained from the system TOC2P by
replacing rule (Abstraction) of Definition 1 by the following rule:

(AAbstraction) Γ, x : A � M : B

Γ � (λx : A . M) : (Πx : A . B)
Condition:
x �∈ FV(Γ, A)
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If S is the specification for the calculus of constructions, then this is the system
λω(S) of [38], and the system λ(S) is TOC2P.

As in Remark 2, we can omit the condition on x. We are stating the condition
in this formulation for the reasons given in Remark 2.

The change from (Abstraction) to (AAbstraction) in this definition does not
affect Remark 5, Remark 6, Lemma 10, Remark 11, Lemma 14, Lemma 3,
Lemma 23, Lemma 24, Lemma 25, and Corollary 26 or their proofs, which
apply to TOC2A as well as TOC2P.

Definition 31 The system TOC0A is obtained from the system TOC0P by
replacing rule (Πsi) of Definition 17 by the following rule:

(AΠsi) ∆, x : A � M : B ∆ � A : s

∆ � (λx : A . M) : (Πx : A . B)
Condition:
x �∈ FV(∆, A)

Remark 32 In the style of Prawitz [10] used by Seldin in earlier papers, this
rule would be written as follows:

(AΠsi) [x : A]
M : B A : s
(λx : A . M) : (Πx : A . B)

Condition: x does not
occur free in A or
in any undischarged
assumption.

Remark 33 Note that rule (AΠsi) is similar in a sense to the deduction
theorem for restricted generality given by Bunder in [41, Theorem 6, p. 26], 5

which has the form

∆, Xx � Y x ⇒ ∆, LX � ΞXY,

where x �∈ FV(∆, X, Y ). The sense in which it is similar is that the only

5 Bunder acknowledges in a footnote an appearance of essentially the same theorem
from different assumptions that appeared in Seldin [42, Theorem 4C1, p. 111], which
actually appeared before [41]. However, Seldin had seen Bunder present his version
of this theorem in a seminar in Amsterdam in early November, 1967, whereas Seldin
did not begin his own work on this result until May, 1968. Furthermore, Seldin’s
system was later proved inconsistent [43].
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restriction on the form of the rule

∆, Xx � Y x ⇒ ∆ � ΞXY,

which is known to be inconsistent, applies to the antecedent. The corresponding
rule for Curry’s theory of functionality is

∆, Xx � Y (Zx) ⇒ ∆, LX � FXY Z,

where, again, x �∈ FV(∆, X, Y, Z). The theory of functionality was Curry’s
version of type assignment, he considered it closely related to his theory of
restricted generality, and in modern notation this would be written

∆, x : X � Zx : Y ⇒ ∆, X : LX � Z : X → Y.

In a Curry’s generalized functionality, 6 where GXY Z means Z : (Πx :
X . Y ), the corresponding rule would be

∆, Xx � Y x(Zx) ⇒ ∆, LX � GXY Z,

in Curry’s notation and, in modern notation,

∆, x : X � Zx : Y x ⇒ ∆, x : L � Z : (Πx : X . Y ).

Church [45, Theorem I, p. 358] had a version of the deduction theorem for
restricted generality with a restriction only on the antecedent:

∆, Xx � Y x ⇒ ∆, ΣX � ΞXY,

where ΣX means that there is a U such that XU . Otherwise, it appears that all
restricted forms of the deduction theorem for restricted generality that appeared
in print before that of [41] restricted both X and Y .

Remark 34 The system TOC2A is not an APTS in the sense of Bunder and
Dekkers [21] because the APTS systems have an additional restriction on the
abstraction rule. For the calculus of constructions, the restriction says that
B �≡ Type. With this restriction, TOC2A is equivalent to TOC2P.

We can now prove the equivalence of TOC2A and TOC0A. For this proof,
Γ �2 E will mean that Γ � E is provable in TOC2A, and Γ �0 E will mean

6 See [44].
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that Γ � E is provable in TOC0A. The other conventions from the proofs of
Theorems 27 and 28 will remain unchanged.

Theorem 35 If

Γ �2 E (7)

then

Γ �0 E. (8)

PROOF. The proof is the same as that of Theorem 27 except for the case
for (Abstraction) in the induction step, which must be replaced as follows: E
is (λx : A . M) : (Πx : A . B), and the premise is

Γ, x : A �2 M : B.

Furthermore, by Lemma 7, it follows that there is a subdeduction of (7)

Γ �2 A : s.

By the induction hypothesis to both of these, we have

Γ, x : A �0 M : B and Γ �0 A : s,

and (8) follows by rule (AΠsi). �

Theorem 36 If ∆ is a well-formed environment with respect to TOC0A, and
if

∆ �0 E (9)

then there is a sequence Γ such that {Γ} is ∆ and (7) holds.

PROOF. The proof is the same as that of Theorem 28 except that the case
for (Πsi) must be replaced with the following case for (AΠsi): E is (λx :
A . M) : (Πx : A . B) and the premises are

∆, x : A �0 M : B and ∆ �0 A : s,
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where x �∈ FV(∆, A). By the induction hypothesis, there is a well-formed
sequence Γ such that {Γ} is ∆, and, since it also follows that ∆, x : A is
well-formed, {Γ, x : A} is ∆, x : A, and x �∈ FV(Γ, A), and, in addition,

Γ, x : A �2 M : B and Γ �2 A : s.

Then (7) follows by (AAbstraction). �

Corollary 37 A sequence Γ is well-formed with respect to TOC0A if and only
if it is well-formed with respect to TOC2A.

It remains to state the relationship between the P-versions and the A-versions.
Part of this is easy as noted by Severi [38] in the second lst paragraph of §2.

Theorem 38 Every judgment valid in TOC2P (respectively TOC0P) is valid
in TOC2A (respectively TOC0A).

PROOF. By an easy induction on the proof of the judgment in TOC2P
(respectively TOC0P). �

To state the converse to this relationship, we need to recall some results from
[12, §2].

Recall, first, that by [12, Definition 2] terms which reduce to the form

(Πx1 : A1 . Πx2 : A2 . . . . . Πxn : An . Prop)

are called contexts, whereas terms which reduce to the form

(Πx1 : A1 . Πx2 : A2 . . . . . Πxn : An . Type)

are called supercontexts. Terms in the form

(Πx1 : A1 . Πx2 : A2 . . . . . Πxn : An . Type)

are called standard supercontexts or supercontexts in standard form. The fol-
lowing result is similar to [12, Theorem 8]: 7

Theorem 39 If Γ � M : A in TOC2P, then exactly one of the following

7 See also [6, Theorem 4.11] and [13, p. 433f].
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holds:

(1) Γ � A : s, or
(2) A is Type.

PROOF. Since Γ �� Type : s, we need only prove Γ � A : s or A is Type,
which we prove by induction on the deduction of Γ � M : A in TOC2P. The
basis is trivial, since M : A is Prop : Type.

For the induction step, there are cases by the last rule of the deduction. If
the rule is (Validity), the result is clear since M : A is Prop : Type. If the rule
is (Variable), the result follows from the fact that Γ is well-formed and A is
a type in Γ, and by (Weakening), which holds by Lemma 10. If the rule is
(Product), the result is clear since A is s, which is either Prop or Type. If the
rule is (Abstraction) or (Conversion), the right premise (and, in the case of
(Abstraction), an application of rule (Product)), gives us the result.

This leaves the case for (Application). Here, M is PN , A is [N/x]C, and the
premises are

Γ � P : (Πx : B . C) and Γ � N : B.

By the induction hypothesis and the first premise, Γ � (Πx : B . C) : s (since
it cannot be Type), and by Lemma 14, Γ, x : B � C : s. Hence, by [19, Lemma
5.2.11], Γ � A : s. �

For the systems TOC2A and TOC0A, this result must be generalized. For
the rule (AAbstraction) does not exclude a conclusion with a supercontext on
the right of the colon, and if supercontexts can occur there, then in the case
for (Application), we have to allow for the possibility that (Πx : B . C) is a
supercontext, in which case [N/x]C will also be a supercontext. With these
modifications of the above proof, and noting that Barendregt’s substitution
lemma [19, Lemma 5.2.11] can be proved for TOC2A, we get the following
result:

Theorem 40 If Γ � M : A holds in TOC2A, then exactly one of the follow-
ing holds:

(1) Γ � A : s, or
(2) A is a standard supercontext.
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Severi [38] proved this as Theorem 4.9. Note that this theorem holds for
TOC0A if ∆ is a well-formed environment.

Remark 41 TOC2A (respectively TOC0A) is actually stronger than TOC2P
(respectively TOC0P), since in the former we can prove

(λx : Prop . Prop) : (Πx : Prop . Type),

but we cannot prove this in the latter (by the generation lemma, [19, Lemma
5.2.13]). Severi [38] noted this with a similar example in the last paragraph of
§2.

Remark 42 The difference between the P-versions and the A-versions is that
in the latter, supercontexts that differ from Type may occur as the type of a
term, whereas these cannot occur in the former.

Remark 43 [12, Theorem 8] says that if Γ � M : A where Γ is a well-formed
environment, then exactly one of the following holds:

(1) Γ � A : Prop,
(2) Γ � A : T , where T is a supercontext, or
(3) A is a supercontext.

That theorem applies to a system, called TOC0 in [12], of which both TOC2P
and TOC2A (and, equivalently, both TOC0P and TOC0A) are subsystems.
In that version of TOC0, assumptions are allowed of the form x : T , where
T is a supercontext. (Note that [12, Definition 3] differs from Definition 21
above precisely in allowing among well-formed sets to include assumptions of
the form x : T where T is a supercontext.) This is not allowed in well-formed
environments in any of the systems considered in this paper. (We are dealing
with supercontexts here instead of standard supercontexts because this version
of TOC0 is an AC system. See §6.)

Remark 44 It might appear that we can get a PTS equivalent to TOC2A
by adding a sort Type2, adding the axiom Type : Type2, and adding rules
(Type, Type2) and (Type2, Type2). It is true that in this PTS, supercontexts
other than Type can occur as types of terms. However, this PTS adds too much,
since it allows assumptions of the form x : Type or x : T for a supercontext T
in well-formed environments.
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5 C-versions: relaxing the conversion rule

The C-versions of these systems are obtained from the P-versions primarily
by omitting the third premise of the conversion rules (rule (Conversion) in
TOC2P and rule (Eq′′′) in TOC0P). This allows any term that converts to a
type to be a type. Since we want to preserve Theorem 39, we also need to add
a rule that any term convertible to a term in a sort is also in that sort.

Definition 45 The system TOC2C is obtained from TOC2P by replacing the
rule (Conversion) of Definition 1 by the rule

(CConversion) Γ � M : A A =β B

Γ � M : B

and by adding the rule

(sort-Conversion) Γ � A : s A =β B

Γ � B : s

Remark 46 As pointed out in Remark 2, the conditions on variables in rules
(Validity), (Product), and (Abstraction) are needed here. This is because oc-
currences of free variables are not invariant of conversion.

The change from (Conversion) to (CConversion) and the addition of (sort-
Conversion) in this definition do not affect Remark 5, Remark 6, Lemma 10,
Remark 11, Remark 12, Lemma 13, Lemma 14, Lemma 3, Lemma 23, Lemma 24,
Lemma 25, and Corollary 26, which apply to TOC2C as well as TOC2P.

Definition 47 The system TOC0C is obtained from the system TOC0P by
replacing the rule (Eq′′′) of Definition 17 by the rule

(Eq′′) ∆ � M : A A =β B

∆ � M : B

and adding the rule

(Eq′s) ∆ � A : s A =β B

∆ � B : s
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Remark 48 In TOC0C, it is easy to prove that

∆ � M : A & ∆ =β ∆′ ⇒ ∆′ � M : A.

It follows from this and the alterations allowed by the remarks and lemmas that
TOC0C is equivalent to an SPTS in the sense of Bunder and Dekkers [21].

Remark 49 The rule

Γ � M : A M =β N

Γ � N : A

is not admissible in TOC2C (or in any of the systems we consider in this
paper). The Subject-Reduction Theorem, which says that

Γ � M : A M �β N

Γ � N : A

is admissible, does hold for all these systems, but the Subject-Expansion The-
orem, which asserts the admissibility of

Γ � M : A N �β M

Γ � N : A,

is not admissible without severe and complicated restrictions. The reasons are
the same ones given for simple type assignment (basic functionality) in [46,
§9C3]: 1) if a subterm N is cancelled in a contraction, as in the contraction of
(λx : A . M)N (where x �∈ FV(M)) to M , the fact that M is assigned a type
does not guarantee that N is assigned one, and 2) if a subterm N is duplicated
in a contraction from (λx : A . M)N to [N/x]M , the fact that [N/x]M is
assigned a type does not guarantee that N is assigned the same type in all
occurrences, and if it is not then it will not, in general, be possible to assign a
type to (λx : A . M).

This rule can be added to TOC2C and TOC0C, where it would take the place
of its special case, (sort-Conversion). Seldin made this change to the original
TOC0 that is mentioned in Remark 43, calling the resulting system TOCE,
and proved that if Γ � M : A in TOCE, then there is a term M ′ such that
M =β M ′ and Γ � M ′ : A in that original TOC0; see [14, Theorem 1]. Al-
though we have not checked the details, we believe that the same result holds
for TOC0AC, TOC2AC, TOC2C, and TOC0C.

Theorems 27 and 28 hold word-for-word if the references to TOC2P and
TOC0P are replaced respectively by TOC2C and TOC0C. The proofs are
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obtained by replacing the case for the conversion rule in each theorem and
adding the trivial case for the new conversion rule in each. This proves

Theorem 50 If

Γ �2 E, (10)

then

Γ �0 E. (11)

Theorem 51 If ∆ is a well-formed environment with respect to TOC0C, and
if

∆ �0 E, (12)

then there is a sequence Γ such that {Γ} is ∆ and (10) holds.

Now for the relation between TOC2C and TOC2P. If Γ is

x1 : A1, x2 : A2, . . . , xn : An,

we say that Γ′ =β Γ if Γ′ is

x1 : A′
1, x2 : A′

2, . . . , xn : A′
n

and A′
i =β Ai for i = 1, 2, . . . n.

Theorem 52 If

Γ � M : A (13)

holds in TOC2C, then there are terms A′ and M ′ and a sequence Γ′, such that
Γ′ =β Γ, A′ =β A and M ′ =β M , where if A is a sort then A′ is the same sort
and if M is a variable then M ′ is the same variable, and

Γ′ � M ′ : A′ (14)

in TOC2P.

PROOF. By induction on the proof of (13).
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Basis: Trivial, since Γ′ ≡ Γ is empty, A′ ≡ Type ≡ A, and M ′ ≡ Prop ≡ M .

Induction step: The cases are by the last inference in the derivation of (13).

Case (Validity). Γ is Γ1, x : B; M : A is Prop : Type; x �∈ FV(Γ1, B) and the
premise is

Γ1 � B : s.

By the hypothesis of induction, there are Γ′
1 and B′ such that Γ′

1 =β Γ1 and
B′ =β B and

Γ′
1 � B′ : s

in TOC2P. If we put Γ′ ≡ Γ′
1, x : B′; M ′ ≡ M ; and A′ ≡ A, then x �∈

FV(Γ′
1, B

′) by [19, Lemma 5.2.8], and (14) follows by (Validity).

Case (Variable). Γ is Γ1, x : A, Γ2; M is x; and the premise is

Γ1, x : A, Γ2 � Prop : Type.

By the induction hypothesis, there are Γ′
1, A′, and Γ′

2 such that Γ′
1 =β Γ1,

A′ =β A, and Γ′
2 =β Γ2, and

Γ′
1, x : A′, Γ′

2 � Prop : Type

holds in TOC2P. If we put M ′ ≡ x and Γ′ ≡ Γ′
1, x : A′, Γ′

2, then (14) follows
by (Variable).

Case (Product). Then M is (Πx : B.C), A is s, x �∈ FV(Γ, B), and the premise
is

Γ, x : B � C : s.

By the induction hypothesis, there are Γ′, B′, and C ′ such that Γ′ =β Γ,
B′ =β B, and C ′ =β C and

Γ′, x : B′ � C ′ : s

holds in TOC2P. If we put A′ ≡ (Πx : B′ . C ′), then (14) follows by (Product).
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Case (Abstraction). M is (λx : B . N), A is (Πx : B . C), and the premises
are

Γ, x : B � N : C and Γ, x : B � C : s.

By the induction hypothesis, there are Γ′′, B′′, N ′, C ′′, Γ′′′, B′′′, and C ′′′ such
that Γ =β Γ′′ =β Γ′′′, B =β B′′ =β B′′′, N =β N ′, and C =β C ′′ =β C ′′′ such
that

Γ′′, x : B′′ � N ′ : C ′′ and Γ′′′, x : B′′′ � C ′′′ : s

hold in TOC2P. By the Church-Rosser Theorem, there are Γ′, B′, C ′, such
that Γ′′�Γ′, Γ′′′�Γ′, B′′�B′, B′′′�B′, C ′′�C ′, and C ′′′�C ′. By a combination
of the proof of [19, Lemma 5.2.15] and [19, Corollary 5.2.16], we have

Γ′, x : B′ � N ′ : C ′ and Γ′, x : B′ � C ′ : s

in TOC2P, and setting M ′ ≡ λx : B′ . N ′ and A′ ≡ Πx : B′ . C ′, we get (14)
by (Abstraction).

Case (Application). M is PN , A is [N/x]C, and the premises are

Γ � P : (Πx : B . C) and Γ � N : C.

By the induction hypothesis, the Church-Rosser Theorem, [19, Lemma 5.2.15],
and the proof of [19, Corollary 5.2.16], there are (as in the case for (Abstrac-
tion) above) Γ′, B′, C ′, P ′, and N ′ such that Γ =β Γ′, B =β B′, C =β C ′,
P =β P ′, N =β N ′, and

Γ′ � P ′ : (Πx : B′ . C ′) and Γ′ � N ′ : C ′.

holds in TOC2P. If we put M ′ ≡ (P ′N ′) and A′ ≡ [N ′/x]C ′, we get (14) by
(Application).

Case (CConversion). The premises are

Γ � M : B and A =β B.

By the the first of these and the induction hypothesis, there are Γ′, M ′, and
B′ such that Γ =β Γ′, M =β M ′, and B =β B′ and

Γ′ � M ′ : B′
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holds in TOC2P. Since A =β B′, we can put A′ ≡ B′, and this is (14).

Case (sort-Conversion). Here A ≡ s, M ≡ B, and the premises are

Γ � C : s and C =β B.

By the first of these and the induction hypothesis, there are Γ′ =β Γ and
C ′ =β C such that

Γ′ � C ′ : s

holds in TOC2P. Since B =β C ′, this is (14). �

Remark 53 An easier proof would use [21, Theorem 5.4] of Bunder and
Dekkers. We have previously shown that TOC0P is equivalent to TOC2P, and
this theorem shows that TOC2P is equivalent modulo conversion to TOC0C.
Furthermore, TOC2C is equivalent to TOC0C.

Because the Subject-Reduction Theorem holds for TOC2P, we have

Corollary 54 In Theorem 52, M ′, A′, and the types of Γ′ can be assumed to
be in normal form.

Remark 55 It seems obvious that with the change from the P and A systems
to the C systems the proof of strong normalization breaks down. However, it
is possible to prove normalization for these systems, and strong normalization
fails only for the types of bound variables. The proof is based on deduction
reductions. In TOC0C, the reduction step takes

D1(x)
∆, x : A � M : B

D2(x)
∆, x : A � B : s

D3

∆ � A : s′

∆ � (λx : A . M) : (Πx : A . B)
(Πsi)

∆ � (λx : A . M) : (Πx : C . D)
(Eq′′) D4

∆ � N : C

∆ � (λx : A . M)N : [N/x]D
(Πe)

D5

to

D′
4

∆′ � N : C
∆′ � N : A

(Eq′′)

D1(N)
∆ � [N/x]M : [N/x]B

∆ � [N/x]M : [N/x]D
(Eq′′)

D′
5
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where A =β C, B =β D, x �∈ FV(∆, A), D′
5 is obtained from D5 by replacing

appropriate occurrences of (λx : A . M)N by [N/x]M , ∆ ⊂ ∆′, and D′
4 is

obtained from D4 as described in Remark 18. In the style of the earlier works
by Seldin (see Remark 20), this would be written as a reduction of

1
[x : A]
D1(x)
M : B

2
[x : A]
D2(x)
B : s

D3

A : s′

(λx : A . M) : (Πx : A . B)
(Πsi − 1 − 2)

(λx : A . M) : (Πx : C . D)
(Eq′′) D4

N : C

(λx : A . M)N : [N/x]D
(Πe)

D5

to

D4

N : C
N : A

(Eq′′)

D1(N)
[N/x]M : [N/x]B

[N/x]M : [N/x]D
(Eq′′)

D′
5

where D′
5 is obtained from D5 by replacing (λx : A . M)N by [N/x]M . In

TOC2C, the reduction step takes

Γ, x : A � M : B Γ, x : A � B : s

Γ � (λx : A . M) : (Πx : A . B)
(Abstraction)

Γ � (λx : A . M) : (Πx : C . D)
(CConversion)

Γ � N : C

Γ � (λx : A . M)N : [N/x]D
(Application)

to

Γ, x : A � M : B
Γ � N : C
Γ � N : A

(CConversion)

Γ � [N/x]M : [N/x]B
(Substitution Lemma)

Γ � [N/x]M : [N/x]D.
(CConversion)

Strong normalization for these deduction reductions is proved in [12, Theorem
11] for an extension of TOC0AC, where it is assumed that ∆ is a well-formed
environment. The normalization theroem for terms is proved in [12, Theorem
12], and the proof that the only subterms that are not strongly normalizing are
those that occur as the types of bound variables or those whose types are either
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Prop or Type is given in [12, Corollary 12.1]. Although all of these results are
proved for an extension of TOC0AC, they hold for TOC0C because it is a
subsystem of TOC0AC and for TOC2C by Theorems 50 and 51 above.

Remark 56 It may appear that typechecking is lost in the C versions. How-
ever, this is not the case. By Corollary 54, typechecking can be applied to
TOC2C by reducing the term involved to its normal form (which it has by
Remark 55) and typechecking in TOC2P. Since TOC0C is a subsystem of
TOC2AC, a similar conclusion follows by [12, Corollary 12.3].

6 AC-versions: relaxing both the abstraction and conversion rules

Definition 57 The system TOC2AC is obtained in one of three ways (all of
which are equivalent):

(1) from TOC2P by replacing (Abstraction) by (AAbstraction), replacing (Con-
version) by (CConversion), and by adding (sort-Conversion).

(2) from TOC2A by replacing (Conversion) by (CConversion), and by adding
(sort-Conversion).

(3) from TOC2C by replacing (Abstraction) by (AAbstraction).

The changes to not affect Remark 5, Remark 6, Lemma 10, Remark 11,
Lemma 3, Lemma 23, Lemma 24, Lemma 25, and Corollary 26 or their proofs,
which apply to TOC2AC as well as TOC2P.

Definition 58 the system TOC0AC is obtained in one of three ways (all of
which are equivalent):

(1) from TOC0P by replacing (Πsi) by (AΠsi), replacing (Eq′′′) by (Eq′′),
and by adding (Eq′s).

(2) from TOC0A by replacing (Eq′′′) by (Eq′′), and by adding (Eq′s).
(3) from TOC0C by replacing (Πsi) by (AΠsi).

To prove the equivalence of TOC2AC and TOC0AC, take alternative 2 in each
of Definitions 57 and 58. Then Theorems 35 and 36 hold word-for-word if the
references to TOC2A and TOC0A are replaced respectively by TOC2AC and
TOC0AC. The proofs are obtained by replacing the case for the conversion
rule in each theorem and adding the trivial case for the new conversion rule
in each. This proves

Theorem 59 If

Γ �2 E, (15)
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then

Γ �0 E. (16)

Theorem 60 If ∆ is a well-formed environment with respect to TOC0AC,
and if

∆ �0 E, (17)

then there is a sequence Γ such that {Γ} is ∆ and (4) holds.

For the relationship between the AC systems and the other systems, let us be-
gin with the definition by taking alternative 3 in each of Definitions 57 and 58.
By Theorem 52, Theorem 39 holds for TOC2C in the following modified form:
if Γ � M : A in TOC2C, then either Γ � A : s in TOC2C or else A =β Type.
For the same reason, the proof of Theorem 40 will also carry over to TOC2AC:
if Γ � M : A in TOC2AC, then either Γ � A : s in TOC2AC or else A is a
supercontext (i.e., A converts to a standard supercontext). This means that
we can sum up the relations between the AC systems and the others as follows:

Theorem 61 (1) If Γ � M : A in TOC2AC, and if A is not a supercontext,
then there are Γ′ =β Γ, M ′ =β M , and A′ =β A such that Γ′ � M ′ : A′

in TOC2P.
(2) If Γ � M : A in TOC2AC, and if A is not a supercontext distinct from

Type, then Γ � M : A in TOC2C.
(3) If Γ � M : A in TOC2AC, then there are Γ′ =β Γ, M ′ =β M , and

A′ =β A such that Γ′ � M ′ : A′ in TOC2A.

Remark 62 The additional restriction B �=β Type on the abstraction rule,
which amounts to the same as the type of A not being a supercontext distinct
from Type in Theorem 61 1 and 2, converts TOC0AC into an SAPTS in the
sense of Bunder and Dekkers [21]. This SAPTS, with the calculus of construc-
tions specification, is equivalent to the corresponding PTS and so to TOC0P.

Remark 63 In his earliest work on the calculus of constructions, Seldin [6]
included a rule

(≡′
α) M : A

N : A
Condition: N is ob-
tained from M by
changes of bound
variables.
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At the time, it was thought that this was the only way to obtain deductions of
the form

Γ � (λx : A . M) : (Πy : A . B).

However, such deductions can be obtained using the rule of (Conversion) in
one of its forms, so this rule is unnecessary.

Remark 64 On the subject of normalization, see Remark 55, the results of
which apply to the AC versions as well as the C versions.

Remark 65 Typechecking holds for the AC systems. See Remark 56.

7 Conclusion

In this paper, we have compared six different versions of the calculus of con-
structions. As we pointed out in the introduction, which version one will
want to use will depend on one’s purposes. If one wants to implement a ver-
sion in which fast type-checking is important, one will probably prefer either
TOC2P or TOC2A. 8 On the other hand, in about 1987, Garrel Pottinger
remarked to Seldin that proving the strong normalization theorem was easier
with TOC0AC than with a P or A version. 9 Furthermore, since the AC ver-
sions are the strongest, consistency results proved for them will carry over to
the other versions. Thus, a version like TOC0AC may be more useful for some
proof-theoretic purposes.
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