
CURRY’S ANTICIPATION OF

THE TYPES USED IN

PROGRAMMING

LANGUAGES

Jonathan P. Seldin
Department of Mathematics and Computer

Science
University of Lethbridge

Lethbridge, Alberta, Canada
jonathan.seldin@uleth.ca

http://home.uleth.ca/∼jonathan.seldin

Annual Meeting
Canadian Society for History and

Philosophy of Mathematics
Toronto, Ontario
24–26 May 2002

September 17, 2002

Computer data stored as strings of 0s and 1s

A given string can be interpreted by a program

in more than one way

Example:

10111110011010000000000000000000

Can interpret as:

• An unsigned integer. This is just a binary

integer. Value = 219 + 221 + 222 + 225 +

226+227+228+229+231 = 3,194,486,784

• A signed integer. First bit, 1, is - sign. The

value is −(220 + 222 + 223 + 226 + 227 +

228 + 229 + 230) = −1,047,003,136

• A floating point real. First bit, 1, is -. Next

8 bits, 01111100, are binary for the expo-

nent, which is 124−128 = −4. Remaining

bits are mantissa, which is

11010000000000000000000

= 0.11012 = 2−1 + 2−2 + 2−4

=
13

16
= 0.812510

So the value is −0.8125 × 2−4

Types

Examples: int, real, bool

Variables must often be declared: num : int,

radius : real, cond : bool

We may want compound types: int -> bool is

the type of a function from integers to booleans

These are modelled by typed λ-calculus

λ-calculus

We write “f is x �→ x2” for “f(x) = x2”

f(3) = 32 = 9

Why not write “(x �→ x2)(3) = 32 = 9”?

In the 1930s, Alonzo Church wrote

(λx . x2)3 = 32 = 9

Currying

Given f(x, y) = x − y

(curryf)3 = λy . 3 − y

((curryf)x)y = f(x, y)

Write MNPQ for (((MN)P)Q)

Formal λ-calculus (Church, 1932/33, 1941)

Variables: x, y, z, u, v, w, . . .

Perhaps some constants

Terms: variables, constants, (MN), λx . M

Contractions: replacement of

λx . M by λy . [y/x]M

(λx . M)N by [N/x]M

Reductions: sequence of contractions

Notation: ✄

Conversions: sequence of contractions and re-

verse contractions

Notation: =∗

Meaningless terms: (λx . xx)(λx . xx)

Reduces only to itself (infinite loop)

(λx . xxx)(λx . xxx)

Reduces to (λx . xxx)(λx . xxx)(λx . xxx)

(infite expanding loop)

Avoid these terms: assign types (Church, 1940)

Types are atomic types and α → β

Assumptions assign types to variables

Rules are

[x : α]
M : β

λx . M : α → β
(→ i)

and
M : α → β N : α

MN : β
(→ e)

Combinatory Logic (Schönfinkel, 1920; Curry,

1929, 1930)

Variables: x, y, z, u, v, w, . . .

Constants: I, K, S, and perhaps others

Terms: variables, constants, (MN)

Contractions: replacement of

IX by X

KXY by X

SXY Z by (XZ)(Y Z)

Reductions: sequences of contractions

Notation: ✄

Conversions: sequences of contractions and

reverse contractions

Notation =∗

Definition of abstraction:

[x]x ≡ I

[x]c ≡ Kc

[x](MN) ≡ S([x]M)([x]N)

Other combinators:

BXY Z ✄ X(Y Z)

CXY Z ✄ XZY

WXY ✄ XY Y

Church’s original system:

λx . M defined only if x free in M

Curry’s original system:

[x]M always defined

Originally, exact connection between combina-

tory logic and λ-calculus not clear

Details worked out by Rosser in 1930s

Type assignment: same types, rule (→ e),

and axiom schemes:

(→ I) I : α → α

(→ K) K : α → (β → α)

(→ S) S : (α → (β → γ)) → ((α → β) → (α → γ))

Derived rule:

[x : α]
M : β

[x]M : α → β

Proof similar to proof of deduction theorem in

propositional calculus

Curry’s approach to types (Curry, 1934, 1936)

For Curry, M : α was statement αM of logic

f : α → β stood for (∀x)(αx ⊃ β(fx))

Axioms and rules for types follow by axioms

and rules for logic primitives

Curry used logic primitive Ξ, where ΞXY stood

for (∀x)(Xx ⊃ Y x)

Curry thus defined

F ≡ λxyz . (∀u)(xu ⊃ y(zu))

=∗ λxyz . (∀u)(xu ⊃ Byzu)

=∗ λxyz . Ξx(Byz)

Here Fαβf stood for modern f : α → β

Curry’s version of rule (→ e):

FXY Z XU
Y (ZU)

Curry called this the theory of functionality

As early as July 1930, Curry was naming im-

plication formulas for combinators:

(PI) A ⊃ A

(PK) A ⊃ (B ⊃ A)

(PS) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

This is probably the beginning of propositions-

as-types

In his logic, Curry postulated rule (Eq):

X X =∗ Y
Y

In the theory of functionality, this rule also held

In 1950s, Curry prooved that if any term is a

type, the system is inconsistent. He proved

this (Curry, 1958, p. 349) by proving

β(WWW)

where β is any term. He then lets β be KX for

an arbitrary term X, thus getting

KX(WWW)

from which, by Rule (Eq), he gets

X

But earlier in (Curry, 1958, p. 279), he had ba-

sic functionality, in which types were all terms

in normal form and could not be converted to

other terms. This led to a restricted version

of Rule (Eq), namely Rule (Eq′):

αX X =∗ Y
αY

About 1966, he separated Rule (Eq) into two

rules for functionality:

αX X =∗ Y
αY

(Eqs)
αX α =∗ β

βX
(Eqp)

(Curry, 1968, Chapter 14)

Relation to logic

In 1935, Curry’s original system (along with

that of Church) was proved inconsistent by

Kleene and Rosser

Curry’s response: examine different kinds of

systems for consistency

His original idea (late 1930s, published 1941):

systems based on logical primitives

Three kinds of systems:

• F1: primitive is F

Ξ ≡ λxy . FxyI or Ξ ≡ λxy . FxIy

• F2: primitive is Ξ

F defined as above, P ≡ λxy . Ξ(Kx)(Ky),

and Π ≡ λx . ΞEx, where
 EX for all terms

X

• F3: primitives are P and Π

Ξ ≡ λxy . Π(λu . P(xu)(yu))

Curry originally thought that F3 was stronger

than F2 was stronger than F1 (on reasonable

additional assumptions). However, it has turned

out that F2 and F3 are of essentially the same

strength on any reasonable additional postu-

lates, and that if the equality rules are not sep-

arated F1 is of essentially the same strength.

With Curry’s idea of 1956 for G, we have

G ≡ λx, y, z . Ξx(Syz)

=∗ λx, y, z . (∀u)(xu ⊃ Syzu)

=∗ λx, y, z . (∀u)(xu ⊃ yu(zu))

This gives us the dependent function type:

(Πx : A)B ≡ (∀x : A)B ≡ GA(λx . B)

