CURRY'S ANTICIPATION OF
THE TYPES USED IN
PROGRAMMING
LANGUAGES

Jonathan P. Seldin
Department of Mathematics and Computer
Science
University of Lethbridge
Lethbridge, Alberta, Canada
jonathan.seldin@uleth.ca
http://home.uleth.ca/~jonathan.seldin

Annual Meeting
Canadian Society for History and
Philosophy of Mathematics
Toronto, Ontario
24—26 May 2002

September 17, 2002

Computer data stored as strings of Os and 1s

A given string can be interpreted by a program
in more than one way

Example:
10111110011010000000000000000000

Can interpret as:

e An unsigned integer. This is just a binary
integer. Value = 219 221 4 222 4 225 4
22642274 22845294 231 = 3,194,486,784

e A signed integer. First bit, 1, is-sign. The
value is —(220 4 222 | 223 1 226 4 227
228 1 229 4 230) = _1 047,003,136

e A floating point real. First bit, 1, is-. Next
8 bits, 01111100, are binary for the expo-
nent, which is 124 — 128 = —4. Remaining
bits are mantissa, which is

11010000000000000000000
= 0.1101, =2"1t 42724274

1S _ 0.8125
16 10

So the value is —0.8125 x 2—4

Types

Examples: int, real, bool

Variables must often be declared: num : int,

radius : real, cond : Dbool

We may want compound types: int -> bool iS
the type of a function from integers to booleans

These are modelled by typed A\-calculus

A-calculus
We write “f is x — x2" for “f(z) = z2"
f(3)=32=9
Why not write “(z — 22)(3) =32=9"7
In the 1930s, Alonzo Church wrote

Az .22)3=32=09
Currying

Given f(z,y) =x — vy

(curry)3
(Ceurry f)z)y

Ay .3 —y
f(z,y)

Write MNPQ for (((MN)P)Q)

Formal \-calculus (Church, 1932/33, 1941)
Variables: x,y,z,u,v,w,...

Perhaps some constants

Terms: variables, constants, (MN), Ax . M

Contractions: replacement of

Ax . M by My.|y/x]M
(Ax . M)N by [N/x]M

Reductions: sequence of contractions
Notation: >

Conversions: sequence of contractions and re-
verse contractions
Notation: —.

Meaningless terms: (Az . zx)(A\x . zx)
Reduces only to itself (infinite loop)

(Az . zxx)(Az . xxT)
Reduces to (\z . zaxx)(Az . xxx)(A\x . xxT)
(infite expanding loop)

Avoid these terms: assign types (Church, 1940)
Types are atomic types and a — (3

Assumptions assign types to variables

Rules are
Ee]
M (3 :
)\:c.M:oz—>B(_>l)
and

M:a—03 N:
aMN:ﬁ “(—e)

Combinatory Logic (Schonfinkel, 1920; Curry,
1929, 1930)

Variables: x,y,z,u,v,w,...
Constants: I, K,S, and perhaps others
Terms: variables, constants, (MN)

Contractions: replacement of

|IX by X
KXY by X
SXYZ by (X2)(YZ2)

Reductions: sequences of contractions
Notation: >

Conversions: sequences of contractions and
reverse contractions
Notation =,

Definition of abstraction:

[z]lz = |
[z]lc = Kc
[z](MN) = S([z]M)([z]N)

Other combinators:

BXYZ > X(YZ)
CXYZ > XZY
WXY > XYY

Church’s original system:
Ax . M defined only if «x free in M

Curry’'s original system:
[x]M always defined

Originally, exact connection between combina-
tory logic and A-calculus not clear

Details worked out by Rosser in 1930s

Type assignment: same types, rule (— e),
and axiom schemes:

(—1 | a— «
(—K) Kia—(8—a)
(—=3) S:i(a=(B—=7)—(a=pB)—=(a—7))

Derived rule:
EEe]
M0
[z]M : oo — 3

Proof similar to proof of deduction theorem in
propositional calculus

Curry’s approach to types (Curry, 1934, 1936)
For Curry, M : o was statement aM of logic
f i a— B stood for (Vz)(ax D B(fx))

Axioms and rules for types follow by axioms
and rules for logic primitives

Curry used logic primitive =, where =XY stood
for (Vz)(Xx D Yx)

Curry thus defined

F = Azyz. (Vu)(zu D y(zu))
=+ Azyz . (Vu)(zu D Byzu)
= Azyz . =x(Byz)

Here FaBf stood for modern f :a— (3

Curry’s version of rule (— e):

FXYZ XU
Y (ZU)

Curry called this the theory of functionality

As early as July 1930, Curry was naming im-
plication formulas for combinators:
(PI) ADA

(PK) AD(BDA)
(PS) (AD(B>2XC)D>(ADB)D(AD(0))

This is probably the beginning of propositions-

as-types

T!I"!.‘I

J
T200715B

. 4----;«_. Mgg ?2!'#_"!&:' B W . -
P e

B
B

o7

(=2 (e2g)s (x> 0)
o AN Qe gl

ie:| Eortyra) = (4= (x23))

; R [z~ E_r,:_\-g‘ﬂ = [".r-l-a"j
e § (> ty=)
A Ay ANy %

,"I'lI W 'I’II..I- X =3 EaR
N ,.l"||_‘_ any M 'a‘, A X

Ay l::-l-g:l-—l' T_E.r.-:q'-rin&]_
I'|-'ll k \'L . ";I"vt;-
. VA L) 'h"k Xvex =¥ a-

Vi v, Fvy - gvm
¥ B v, {".!-,.;] < [(2vay— & val].
P PA ?ﬁ{"lnd’] -5 5

Hu R
-Ir|l|';||| HI - '!
(N ML N, F 4=
i I|'|r||_l|'.'| i

JUR 1D 1988 T i

In his logic, Curry postulated rule (Eq):

X X=Y
Y

In the theory of functionality, this rule also held

In 1950s, Curry prooved that if any term is a
type, the system is inconsistent. He proved
this (Curry, 1958, p. 349) by proving

B(WWW)

where 3 is any term. He then lets 8 be KX for
an arbitrary term X, thus getting

KX (WWW)
from which, by Rule (Eq), he gets

X

But earlier in (Curry, 1958, p. 279), he had ba-
sic functionality, in which types were all terms
in normal form and could not be converted to
other terms. This led to a restricted version
of Rule (Eq), namely Rule (Eq’):

aX X =Y
aY

About 1966, he separated Rule (Eq) into two
rules for functionality:

aY (Eas) BX (Eap)

(Curry, 1968, Chapter 14)

Relation to logic
In 1935, Curry's original system (along with
that of Church) was proved inconsistent by

Kleene and Rosser

Curry’s response: examine different kinds of
systems for consistency

His original idea (late 1930s, published 1941):
systems based on logical primitives

Three Kinds of systems:

e Fq: primitive is F

== Mxy. Fxyl or Z = A\zy . Fzly

e Fo: primitive is =

F defined as above, P = Axy . =(Kx)(Ky),
and N = \x . =Ex, where + EX for all terms
X

e F3: primitives are P and Tl

==Xzy. MN(Au . P(zu)(yu))

Curry originally thought that F3 was stronger
than F> was stronger than F; (on reasonable
additional assumptions). However, it has turned
out that F» and F3 are of essentially the same
strength on any reasonable additional postu-
lates, and that if the equality rules are not sep-
arated Fj is of essentially the same strength.

T 56032014

Roa & i GXPE,FTU I Tuiey)
J_,.l""m.l..-».-l.. i . . ‘.'..-. | T
S G= Dogepd FxlJye.
s LI S R s fﬂ.,,n..uﬂuﬁ, o TR
k.

With Curry’'s idea of 1956 for G, we have

G = Mx,y,z.=zx(Syz)
=% Ax,Y,z.(Vu)(zu D Syzu)
= Ax,y,z . (Vu)(xu D yu(zu))

This gives us the dependent function type:

(Nzx: A)B= (Vx: A)B=GA(\z . B)

