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Abstract

This paper shows that H. B. Curry anticipated both the kind of
data types used in computer programming languages and also the
dependent function type.

1 Introduction

Types are used in computer programming for at least two purposes:

1. The interpretation of stored data. The data stored in the memory of a
computer is a string of 0’s and 1’s. For each such string, there are a
number of ways to interpret it. Consider, for example, the string

10111110011010000000000000000000.

This string can be interpeted as:
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Research Council of Canada.
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(a) An unsigned integer. This is just a binary integer. The value is
219 + 221 + 222 + 225 + 226 + 227 + 228 + 229 + 231 = 3, 194, 486, 784.

(b) A signed integer. The first bit, 1, is the − sign. The value is
−(219 + 221 + 222 + 225 + 226 + 227 + 228 + 229) = −1, 047, 003, 136.

(c) A floating point real. The first bit, 1, is -. The next 8 bits,
01111100, are binary for the exponent, which is 124 − 128 = −4.
The remaining bits are the mantissa, which is

11010000000000000000000

= 0.11012 = 2−1 + 2−2 + 2−4

=
13

16
= 0.812510

So the value is −0.8125 × 2−4

Types, such as nat, int, real, bool are used to tell a compiler
which scheme is to be used to interpret the data.

2. The prevention of programming errors. In a computer language with
strong typing, certain kinds of programming errors will be caught by the
compiler before the program is run. If a value being used by a program
is not of the type that the compiler expects, the error is detected and
the compilation fails.

In many programming languages, variables must be declared with their
types, as in num:int, radius:real, cond:bool. We also need compound
types, for example the condition radius > 1, which is a function from real
numbers to the Boolean type, has type real→ bool.

The kind of types used here are different from the logical types used by
Russell and Whitehead [30]1, in which the types are natural numbers. There
has been a change in the notion of type from the logical types of Russell and
Whitehead to the types now in use in computer science. In this paper, I will
discuss the way this newer notion of type began in the late 1920s with H. B.
Curry.2

In order to fully understand Curry’s contribution, it is necessary to un-
derstand the formalism in which he worked: combinatory logic. Combinatory

1The types were actually introduced by Russell tentatively in [25, Appendix B] and
more fully in [26].

2But none of this was published until the 1930s.



logic is easier to understand if one first understands its variant, λ-calculus.
The next two sections of this paper are background: the first of them will
discuss λ-calculus and the second combinatory logic. The last section will
discuss the history of Curry’s work on the subject.

I would like to thank Roger Hindley and Martin Bunder for their helpful
comments and suggestions.

2 Background: λ-calculus

When we first teach students about functions and the function notation, we
explain that if f(x) = x2, then to apply this function to a number such as
3, we substitute 3 for x and follow the instructions: f(3) = 32 = 9. It has
recently become common to refer to this function f as x �→ x2.

So why do we not write

(x �→ x2)(3) = 32 = 9?

We do not write this because in the 1930s and 1940s, Alonzo Church [4]3 had
already introduced the notation

(λx . x2)3 = 32 = 9.

This will do for functions of one argument, but what about functions
of more than one argument? If we allow the value of a function to be a
function, functions of one variable are sufficient. The procedure for this is
known as currying, after H. B. Curry, who was one of the people to use it
extensively.4 To see how it works, consider the function f(x, y) = x − y of
two arguments. We can obtain this function from functions of one argument
as follows: let curryf be a function which, when applied to an argument x,
returns the function which subtracts its argument from x. If x is taken to be
3, this would give us

(curryf)3 = λy . 3 − y.

Applying curryf to x, and then applying the resulting function to a second
argument y returns the value of the original function of two arguments:

((curryf)x)y = f(x, y).

3Actually, Church’s original notation in [1, 2] was slightly different. However, the
notation of [4] soon became standard in λ-calculus.

4But Curry was not the first to use the procedure, and he objected to the use of his
name in [16]. However, the use of his name now seems too well established to be changed.



In λ-calculus and combinatory logic, all functions are assumed to take one
argument.

On the other hand, it is also assumed that everything is a function. We
get the following formal λ-calculus:5

Definition 1 Assume we are given an infinite sequence of variables
x, y, z, u, v, w, x1, . . . and perhaps some constants. Then λ-terms are defined
by induction as follows:

1. Every constant and every variable is a term. Constants and variables
are called atoms.

2. If M and N are terms, then (MN) is a term, called the application of
M to N . (Parentheses are omitted by association to the left, so that
MNPQ stands for (((MN)P )Q).)

3. If v is a variable and M is a term, then λv . M is a term, called the
abstraction of M with respect to v. (Parentheses will be omitted so
that λx1x2 . . . xn . M stands for (λx1 . (λx2 . (. . . (λxn . M) . . .))).)

An occurrence of a variable v inside a subterm of the form λv . M is said
to be bound ; all other occurrences are said to be free. The substitution of a
term N for a variable v in a term M , [N/x]M is defined in the usual way
except that if a variable occurring free in N would become bound in M after
the replacement, that bound variable in M is changed to a variable not used
elsewhere in the term before the replacement.

Contractions are defined as replacements of subterms of the following
kinds:

(α) λx . M by λy . [y/x]M .

(β) (λx . M)N by [N/x]M .

A (β-)reduction is a sequence of zero or more contractions. That M
reduces to N is denoted

M ✄ N.

A (β-)conversion is a sequence of zero or more contractions or reverse
contractions. That M converts to N is denoted

M =∗ N.

5For more details on the pure λ-calculus, see [19, Chapter 1].



Since every term can be both a function and an argument, the λ-calculus
cannot be interpreted in the usual way functions are interpreted in set theory.
It is probably better to think of λ-terms as representing states of a computer
as it is carrying out a program. There are terms which represent infinite
loops, for example

(λx . xx)(λx . xx),

which reduces only to itself, and

(λx . xxx)(λx . xxx),

which reduces to
(λx . xxx)(λx . xxx)(λx . xxx),

etc., and thus represents an infinite expanding loop. In terms of the usual
set-theoretic interpretation of functions, these terms are meaningless.6

These meaningless terms can be avoided, and λ-terms can be brought
into line with the usual set-theoretic notion of function, by assigning types.7

The types involved are not the numerical types of Bertrand Russell, but are
rather the kind of types used in programming languages.

Definition 2 Assume that we are given some atomic types, θ1, θ2, . . .. Types
are defined as follows:

1. Every atomic type is a type.8

2. If α and β are types, then α → β is a type.

Types can then be assigned to λ-terms as follows:9

Definition 3 The system of type assignment to λ-terms assigns types to
certain terms by means of rules. That a term M is assigned a type α is in-
dicated by M :α. Assumptions assign types to variables. Types are assigned

6But there are set-theoretic models of λ-calculus. See [19, Chapters 10–12] for details
and further references.

7This use of types in connection with λ-terms began with [3].
8In [3], the atomic types are o for propositions and ι for individuals. Furthermore,

Church’s notation for α → β is (βα).
9Church did not assign types to terms that were already formed, but required that the

types match properly when terms were formed. For details see [19, Chapter 13]. Type
assignment in the style of Definition 3 is really due to Curry, as we shall see below. For
more details on type assignment to λ-terms, see [19, Chapter 15].



to compound terms (terms that are not atoms) by means of the following
natural deduction rules (in the style of [21]):

( → e) M :α → β N :α

MN :β

( → i) [x :α]
M :β

λx . M :α → β

Condition: x does not
occur free in α or
in any undischarged
assumption.

3 Background: Combinatory Logic

Since Curry worked in combinatory logic rather than λ-calculus, we need to
take a look at combinatory logic.10

In λ-calculus, there are two operations for forming non-atomic terms: ap-
plication and abstraction, and the operation of application involves all the
complications of bound variables. In combinatory logic, the only primitive
operation for forming compound terms is application. Instead of taking ab-
straction as a primitive term-forming operation, there are special constants
in terms of which an abstraction operator can be defined metatheoretically.

Definition 4 Assume we are given an infinite sequence of variables,
x, y, z, u, v, w, x1, . . . and constants I, K, S and perhaps others. Terms are
defined as follows:

1. Every variable and constant is a term. Variables and constants are
called atoms.

2. If M and N are terms, then (MN) is a term. (Parentheses are omitted
as in clause 2 of Definition 1.)

A contraction is a replacement of

IX by X,

KXY by X,

SXY Z by (XZ)(Y Z).

10Combinatory logic began with Schönfinkel [27] and continued with Curry [5, 6, 7, 8,
9, 11].



A (weak) reduction is a sequence of zero or more contractions. That M
reduces to N is denoted

M ✄ N.

A (weak) conversion is a sequence of zero or more contractions and reverse
contractions. That M converts to N is denoted

M =∗ N.

In combinatory logic, all variables are free, so substitution is simple re-
placement. The equivalence with λ-calculus is obtained by defining abstrac-
tion:

Definition 5 The abstraction of a term M with respect to a variable x,
[x]M , is defined by induction on the structure of M as follows, where c
stands for any atom different from x and M ≡ N means that M and N are
the same term:

[x]x ≡ I,

[x]c ≡ Kc,

[x](MN) ≡ S([x]M)([x]N).

Note that [x]M is an abbreviation for a term in which x does not occur at
all. Hence, it is trivial that [x]M ≡ [y][y/x]M . The following can be shown
by induction on the structure of M :

Theorem 1 If M and N are any terms and x any variable,

([x]M)N ✄ [N/x]M.

This shows the close relationship between combinatory logic and λ-calculus.11

The constants I, K, S are called basic combinators. Other combinators can
be defined in terms of them. Some examples of such combinators are

BXY Z ✄ X(Y Z),

CXY Z ✄ XZY,

WXY ✄ XY Y.

Types can be assigned to terms in combinatory logic as well as in λ-
calculus. The types are the same as for λ-calculus; i.e., the types are defined
by Definition 2.12

11For more details, see [19, Chapters 2 and 7–9].
12For more details, see [19, Chapter 14].



Definition 6 The system of type assignment to combinatory terms is similar
to the system of Definition 3. The difference is that rule ( → i) is replaced
by the following axiom schemes:
( → I) I :α → α

( → K) K :α → (β → α)

( → S) S : (α → (β → γ)) → ((α → β) → (α → γ))

It is possible to derive the equivalent rule to ( → i) as a derived rule:

Theorem 2 If x does not occur free in A or in any undischarged assumption,
then the following holds as a derived rule:

[x :α]
M :β

[x]M :α → β

The proof is similar to the proof of the deduction theorem in a system of
propositional calculus in which the only primitive rule is modus ponens.

Note that the types can be interpreted as well-formed formulas whose only
connective is implication, and the terms can be interpreted as deductions
in the fragment of intuitionistic propositional logic in which these are the
only formulas. This correspondence is known as the propositions-as-types
correspondence, or as the Curry-Howard isomorphism.13

4 Curry’s Introduction of Types

In his early work on combinatory logic [5, 6, 7, 8, 9, 11], Curry saw himself
building a system of mathematical logic. In this respect, his early work was
like that of Church in [1, 2]. It was in this context that he first had the
idea for what became his theory of functionality. What we now call the type
was to be a predicate, so that what we now write M :α was, for Curry, αM ,
interpreted as the predicate α with M as its argument. What we now write
as

M :α → β,

13But others besides Curry and Howard came up with this idea independently: they
include H. Läuchli, N. G. de Bruijn, and Dana Scott. See [19, §14D, p. 194] for references.



which says that M is a function from α to β, Curry expressed as

(∀x)(αx ⊃ β(Mx)).

Statements of this form were to be proved from the axioms and rules of logic.
Curry based much of his logic on a constant Ξ with the property that

ΞXY meant essentially (∀x)(Xx ⊃ Y x).14 For this, Curry defined

F ≡ λxyz . (∀u)(xu ⊃ y(zu))

=∗ λxyz . (∀u)(xu ⊃ Byzu)

=∗ λxyz . Ξx(Byz).

Then Fαβf stood for what we now write as f :α → β.
Curry first introduced this idea in notes dated December 13, 1928, which

are reproduced in Appendix A. Note that on the first page, Curry’s original
notation for Fαβf was Fα → βf . Note that on the second page, Curry first
proposed to change this to [α → β]f , which is closer to our modern notation,
but decided instead to settle for Fαβf .15

With these definitions, Curry’s version of Rule ( → e), which he called
“Rule F,” was

FXY Z XU
Y (ZU).

He used this rule with axioms for the “types”16 of the basic combinators:17

(FI) FααI,

(FK) Fα(Fβα)K,

(FS) F(Fα(Fβγ))(F(Fαβ)(Fαγ))S.

This, together with his rule for conversion

14The main difference in meaning between ΞXY and (∀x)(Xx ⊃ Y x) is a technical
matter of when each has logical significance as a proposition.

15The ‘F ’ became ‘F’ only in [17].
16He called them functional characters.”
17The rules are stated here for the basic combinators I, K, and S. However, Curry

originally did not take these as his basic combinators; instead he took B, C, K, and W.
This is mainly because he did not understand the role of S in the definition of abstraction
until May, 1942, when he first gave in his notes the definition of abstraction of Definition 5
above. Before that, he used a completely different definition of abstraction. The definition
of abstraction given in Definition 5 first appeared in print in 1949 in [14].



(Eq) X X =∗ Y
Y.

is Curry’s theory of functionality.
Early on, Curry noticed a similarity between the types of combinators

and implication formulas of propositional calculus, and he soon started using
names for these implication formulas which came from this similarity:

(PI) A ⊃ A,

(PK) A ⊃ (B ⊃ A),

(PS) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),

Curry was giving names somewhat like this as early as July 15, 1930; see his
notes of this date reproduced in Appendix B. The original names were “Pk

instead of ‘(PK)’, but he was using names of the latter form within a couple
of years.18 This is probably the origin of the propositions-as-types notion.19

Curry wrote his first paper on the theory of functionality in 1932, but he
had trouble getting it accepted for publication.20 While he was trying to get
the full paper accepted, he wrote an extended abstract which appeared in
1934 as [10]. The full paper finally appeared in 1936 as [12].

Meanwhile, in 1935, Kleene and Rosser [20] proved inconsistent the orig-
inal systems of both Church and Curry. Church reacted by abstracting the
pure λ-calculus from his system, and he and his students (Kleene and Rosser)

18The faint left-hand column, using the more modern version of the names, is written
in pencil, and may date from July 19, 1936, which is when he classified the notes with a
card in his card index.

19But Curry never carried this idea beyond a kind of curiosity; i.e., a means to find
proofs of pure implication formulas in the intuitionistic propositional logic. It was the
others to came up with this idea indepently who gave the idea its full development.

20One of the referees who originally rejected the paper was Alonzo Church. When I
was Curry’s research assistant (as a graduate student), I saw in his files a typed referee’s
report on this paper with a handwritten correction that was rather clearly in Church’s
handwriting. Curry once told me that he was disappointed when Church later published
[3], because he recognized that Church’s types were closely related to his functional char-
acters. In fairness to Church, Curry’s early theory of functionality did not really look at
all like Church’s type theory, and, in fact, only came to look like it in the 1950s, with the
basic theory of functionality. See below.



lost interested in building a system of logic using it as a basis. Curry’s reac-
tion was different: he had already considered the possibility that his original
system might be inconsistent, and he proposed to develop one or more consis-
tent systems by using the theory of functionality with a constant H (standing
for “proposition”) to restrict the terms that could occur as arguments of log-
ical operators. He also developed, in the late 1930s, a proposal for a sequence
of kinds of systems that differed according to which of the operators F, Ξ,
P (implication), and Π (universal quantifier) is to be primitive. There were
three such kinds:

1. F1: primitive is F. Ξ ≡ λxy . FxyI or Ξ ≡ λxy . FxIy.

2. F2: primitive is Ξ. F ≡ λxyz . Ξx(Byz), P ≡ λxy . Ξ(Kx)(Ky), and
Π ≡ λx . ΞEx, where � EX for all terms X.

3. F3: primitives are P and Π. Ξ ≡ λxy . Π(λu . P(xu)(yu)).

Curry originally thought that on reasonable assumptions, F1 systems are
weaker than F2 systems which, in turn, are weaker than F3 systems; see [13].
However, it has turned out that all three kinds of systems are of essentially
equal strength.

In the early 1950s, Curry used his idea that systems of the kind F1 are
weaker than the others by trying hard to prove that a system of this kind
is consistent if there are no restrictions on the terms that can be types. By
1955, he discovered that this is not true; see [15] and [17, §10A3]. The proof
of inconsistency shows a particular problem with rule (Eq) in the theory of
functionality: Curry derives

� β(WWW),

where β is an arbitrary term. He then substitutes KX for β, where X is an
arbitrary term, in order to conclude

� X.

Inferences like this show that the theory of functionality at this stage was
still not exactly like a system of types.

Curry’s first response to this discovery was to define the basic theory of
functionality. In this theory, the only terms which can be types are those
defined from the atomic types by the operation of forming Fαβ from α and



β. All of these types are terms in normal form, so all inferences by rule (Eq)
take the form

αM M =∗ N
αN.

Not surprisingly, this systems is consistent; see [17, Chapter 9]. Curry also
defined F-deductions, in which conversion rules are not used. Later, in about
1966, Curry split Rule (Eq) into two separate rules, one for terms and the
other for types:

(Eqs) αM M =∗ N
αN,

(Eqp) αM α =∗ β

βM.

These separated rules finally convert the theory of functionality into modern
type assignment. See [18, Chapter 14].21

In the 1950s, Curry had long been thinking about possible generalizations
of the theory of functionality. On March 29, 1956, he had an idea which is
reproduced in Appendix C. With this idea, we have

G ≡ λxyz . Ξx(Syz)

=∗ λxyz . (∀u)(xu ⊃ Syzu)

=∗ λxyz . (∀u)(xu ⊃ yu(zu)).

Curry’s Rule G is the elimination rule, which is

GABM AN
BN(MN).

The introduction rule is

[Ax]
BM

GA(λx . B)(λx . M),

where x does not occur free in A or in any undischarged assumption. The
conversion rules are the separated rules, and in some systems only (Eqp) is
postulated. With these separated conversion rules, it is possible to re-write

21This chapter was written by revising [28, Chapter 3] from my dissertation, but I took
the idea for the separated conversion rules from Curry’s draft for [18].



the rules as follows:

(Ge) M :GAB N :A
MN :BN,

(Gi) [x :A]
M :B

(λ . M) : (λx . B),

Condition: x does not
occur free in A or
in any undischarged
assumption.

(Eqp) M :A A =∗ B
M :B,

(Eqs) M :A M =∗ N
N :A.

Rule (Eqs) may be omitted.22

This form of the rules makes it clear that Curry’s GAB is the dependent
function type, which is nowadays usually written (Πx :A)(Bx) or (∀x :A)(Bx)
or (Πx : A . Bx). Thus, Curry anticipated the dependent function type as
well as the types of programming languages.
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