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The lambda-calculus is a formalism for representing func-

tions.

By the second half of the nineteenth century, the concept

of function as used in mathematics had reached the point at

which the standard notation had become ambiguous.

For example, consider the operator P defined on real

functions as follows:

P[f(x)] = 


 f(x) – f(0)

x
for x  0

f ′(0) for x = 0
 

What is P[f(x + 1)]?  To see that this is ambiguous, let f(x)

= x2 .  Then if g(x) = f(x + 1),  P[g(x)] = P[x2  + 2x + 1] =

x + 2.  But if h(x) = P[f(x)] = x, then h(x + 1) = x + 1 

P[g(x)].  This ambiguity has actually led to an error in the

published literature; see the discussion in (Curry and Feys

1958 pp. 81—82).

As the above explanation shows, it is possible to clarify

the ambiguity by adding a paragraph of explanation or some

other ad hoc device every time the notation is used.  But this
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was not sufficient for those who were constructing systems of

symbolic logic for various reasons.  The first of these was

Gottlob Frege (1848-1925), who was trying to show that mathe-

matics is all a part of logic and wanted a systematic notation

for everything, including functions.

As a part of his formal system, he defined (Frege 1967)

the    graph    (   Werthverlauf ,    course-of-values   ) of a function f,

which he denoted by «ε’ f(ε)».  Thus, the course of values of

the squaring function would be denoted «ε’(ε2) » or «α’ (α2) »

(the Greek letters here being bound variables).  It is

extensional in the sense that ε’(ε2 - 4ε)  = α’ (α·[α - 4]) ,

which follows since x2  - 4x = x(x - 4).  In (Frege 1893),

Frege defined the application of a graph ε’ f(ε) to an argument

∆, which he denoted «∆∩ε’  f(ε)».  In general, ξ∩ζ is defined so

that if ζ is the graph of a function, then ξ∩ζ is the value of

that function for the argument ξ, while if ζ is not the graph

of a function then ξ∩ζ is the graph of a propositional

function which is always false.  Note that ξ∩ζ is defined for

all objects ξ and ζ of the system.  The principal theorem

about this function is f(a) = a∩ε’  f(ε).  This function was

extended to functions of more than one argument in (Frege

1893, §36) by the following trick:  if F(x,y) is a function of

two arguments, it is replaced by a function f of one argument

such that f(a) is the function of y given by F(a,y), and

f(a)(b) is F(a,b).  Thus, for example, if F(x,y) is x — y,

then f(2) = 2 — y, and f(2)(3) = 2 — 3 = — 1.
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The next formalism to deal with a notation for functions

was that of Bertrand Russell (1872-1970), see (Russell 1908).

It was later incorporated in his work with Alfred North White-

head (1861-1947), (Whitehead and Russell 1910-1913).  He used

a notation isomorphic to Frege’s, but only for propositional

functions; other functions were treated as special cases of

relations.

In the notation for propositional functions, Frege’s

«∩» was replaced by «ε», but the types restricted it so that

it became essentially class (or set) membership.

In 1920, Moses Schönfinkel (1889—c. 1942) gave a seminar

talk at Göttingen, later published as (Schönfinkel 1924), that

carried this analysis of notations for functions a stage fur-

ther.  Shönfinkel’s objective was to reduce the number of

primitives in a system like that of (Whitehead and Russell

1910-1913) or like that developed by David Hilbert (1862-1943)

in his lectures on the foundations of mathematics.

In his system, which he called a    function calculus   

(   Funktionenkalkül   ), there is only one operation that forms

compound terms:  it is the one Schönfinkel wrote «fx», repre-

senting the application of a function f to an argument x; it

is defined for all terms.  Schönfinkel adopted the trick of

Frege given above for reducing functions of more than one ar-

gument to functions of one argument, although he seems to have

developed it independently of Frege.  In this notation, it is

common to write «fxyz» for «((fx)y)z».
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The system has three basic constants, C, S, and U.  The

constants C and S are characterized by transformations, so

that Cxy = x.  This means that for any term a, Ca is the func-

tion which, for any x, has the value a; Ca is thus the con-

stant function whose value is a.  The transformation rule for

S is more complicated:  Sxyz = (xz)(yz).  Other functions of a

similar nature can be defined in terms of C and S, for exam-

ple, SCCx = (Cx)(Cx) = x, so SCC is the    identity    function, I.

Other functions which Schönfinkel defined in this way are a

commuter    T with the property that Tfxy = fyx and a  compositor 

Z with the property that Zfgx = f(gx).  The constant U has a

different character:  it represents a logical operator that

Schönfinkel wrote «fx |x  gx» and interpreted to mean «for all

x, not both fx and gx».

Later in the 1920s, Haskell B. Curry (1900—1982) was led

to essentially the same system.  He had started reading

(Whitehead and Russell 1910-1913) while he was still an under-

graduate, and he noticed that in the very first chapter, which

deals with propositional logic, there are two rules of infer-

ence; the first, modus ponens, which says that from p ⊃  q and

p we may deduce q, is very simple in its formal structure, but

the second rule, which allows the substitution of any formula

for a propositional variable, is much more complicated.  (The

kind of complexity is that which would be noticed by somebody

trying to write a computer program for this formalism.)  In

the mid-1920s, Curry decided to try to break down this rule of
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substitution into simpler rules.  In 1926, he realized that he

could do this with essentially the same formalism as Schön-

finkel had introduced; Curry called it    combinatory logic   .  He

did not discover Schönfinkel’s paper until November 1927.

Curry was later to become so completely identified with combi-

natory logic that the method of treating functions of more

than one argument in terms of functions of one argument, which

Frege used and which Curry took from Schönfinkel, has become

known as    currying   .

In a series of papers (Curry 1929; Curry 1930; Curry

1931; Curry 1932; Curry 1933; Curry 1934 Properties; and Curry

1934 Foundations), he developed an axiomatic theory based on

this formalism up to the point of including set theory.  In

(Curry 1929), he pointed out that for any term X formed from

the atomic constants and variables x1 , x2 , …, xn , there is

a term Y formed from the constants alone such that Yx1 x2 …xn

 = X, and in (Curry 1930) he gave axioms to make this Y

uniquely determined (in terms of the equality that the system

axiomatized).  In (Curry 1933), he defined the term [x1 ,x2

,…,xn ]X to be this term Y.  It follows by a simple

substitution that for any terms M1 , M2 , …, Mn , YM1 M2 …Mn 

equals the result of substituting M1 , M2 , …, Mn  for x1 , x2

, …, xn  respectively in X, and hence [x1 ,x2 ,…,xn ]X behaves

like a multiple version of Frege’s graph.  The logical

connectives and quantifiers were defined as atomic constants

without special properties with respect to equality; in (Curry
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1930) the constants are Π for the universal quantifier and P

for implication, so that «(∀ x)A» would be represented in the

system by «Π([x]A)» and «A ⊃  B» by «PAB».  The atomic

constants Curry had discovered on his own were I (  identity   )

with Ix = x, C (   commutor ) with Cfxy = fyx, B (  compositor   ) with

Bfgx = f(gx), and W (   diagnalizer   ) with Wfx = fxx.  His

discovery of Schönfinkel’s paper gave him Schönfinkel’s C,

which he called «K», and also Schönfinkel’s S, now written

«S».  In (Curry 1929), the atomic constants are K and S, but

Curry did not feel that he understood the meaning of S as well

as he understood that of the other atomic constants, and so

the atomic constants for the rest of the papers in the series

are B, C, K, and W.  (Actually, Curry only started using

special type for the combinators in (Curry and Feys 1958), but

the usage has become standard so I will follow it here.)

Meanwhile, Alonzo Church (1903-present) wanted to con-

struct a modification of Frege’s system in which the use of

free variables would be avoided.  One of his goals was that

“every combination of symbols belonging to our system, if it

represents a proposition at all, shall represent a particular

proposition, unambiguously, and without the addition of verbal

explanations.”  (He also proposed to avoid the paradoxes of

set theory and logic by restricting the law of excluded mid-

dle.)  Church made Frege’s treatment of functions basic to his

system in the sense that terms were formed from the variables

by two operations:  (1)  application   , which is denoted «MN» as
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in the work of Schönfinkel and Curry, which represents the ap-

plication of a function M to an argument N and which is de-

fined for any two terms M and N, and (2)  abstraction , which is

denoted «λx.M»  and is defined (in Church’s original system)

for any term M and for any variable x  which occurs free in       M   .

Church’s rules of inference included one for changing bound

variables and another for the    calculation of the values of a

function    by a rule which is now called rule (β): (λx.M)N can

be replaced by the result of substituting N for x in M.  Like

Curry, he represented the logical connectives and quantifiers

by atomic constants.  He published this system in (Church

1932—1933), but much of his motivation did not become clear

until later papers, such as (Church 1951; Church 1951—1954).

Church’s original notation was actually more complicated

than this, in that he wrote «{M}(N)» instead of «MN».  The no-

tation shown here is that of later work in the lambda-calcu-

lus, starting with (Church 1941).

During this period, Church had two graduate students,

Steven Cole Kleene (1909-present) and John Barkley Rosser

(1907-1989).  Kleene studied arithmetic in Church’s system,

and wrote (Kleene 1934) and (Kleene 1935).

Kleene used a representation of the natural numbers suggested

originally by Church; 1 is represented by λxy.xy, 2 by

λxy.x(xy), 3 by λxy.x(x(xy)), etc.  Under this representation,

0 would have to be λxy.y, but in Church’s original system this

is not a well-formed term since x does not occur (free) in y.
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In versions of the lambda-calculus used today, this is a well-

formed term, and these terms, when used to represent the natu-

ral numbers (including 0) are not called the    Church numerals .

Rosser began work on a different version of combinatory

logic, which led to his dissertation (Rosser 1935).  In 1934,

he and Kleene discovered something important about both the

system of logic of Church and the combinatory logic of Curry:

both sys      tems are inconsistent    in that they admit Richard’s

paradox (Kleene and Rosser 1935).  Curry then began a thorough

study of their paradox in detail; this led first to a new ex-

position of the paradox (Curry 1941 Paradox) and then to a

new, simpler contradiction (Curry 1942 Inconsistency), which

has since come to be known as    Curry’s paradox .

Curry’s paradox can be stated fairly easily using the

fixed-point operator  (which Curry originally called the  para- 

doxical combinator ).  This is the term Y, which can be defined

to be λx.(λy.x(yy))(λy.x(yy)) and has the property that YF

converts to F(YF), thus making YF a fixed point of F.

Clearly, if N is negation, then YN is the fixed point of nega-

tion and converts to N(YN), which is itself paradoxical.  But

Curry’s paradox does not require negation; implication is

enough.  Suppose that in a system of combinatory logic or λ-

calculus with an atomic constant P denoting implication, there

is added a predicate «provability», with the following proper-

ties:  1) the scheme P(PX(PXY))(PXY), which is a well known

tautology that is also a theorem of intuitionistic proposi-
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tional logic, is provable for any two terms X and Y, 2) the

rule of modus ponens (from PXY and X to conclude Y) is satis-

fied, and 3) any term convertible to a provable term is prov-

able; then the system is inconsistent in the sense that any

term Y is provable.  For let Y be any term and let X be

Y(λx.Px(PxY)).  Then X converts to PX(PXY).  It follows that

the term P(PX(PXY))(PXY), which is provable by hypothesis,

converts to PX(PXY), which is therefore provable, and since

this converts to X, it, too, is provable.  Hence, by modus po-

nens, PXY is provable, and, by modus ponens again, so is Y.

On the other hand, Church had good reasons to believe

that the part of the systems dealing with the representation

of functions was consistent.  The corresponding part of combi-

natory logic had been proved consistent in (Curry 1930); it

was only the system obtained by adding the additional postu-

lates of (Curry 1934 Properties) that was inconsistent.

(Kleene and/or Rosser told Curry that it was (Curry 1934 Prop-

erties) that gave them what they needed for their proof of in-

consistency.)  Church therefore had reason to believe that the

corresponding part of his system was also consistent.  Thus,

he separated from the rest of the system of (Church 1932-1933)

the part dealing with representing functions and calculating

their value, and he called it the «lambda-calculus», and he

and Rosser proved it consistent in (Church and Rosser 1936) by

a result known as the    Church-Rosser Theorem   .



1 0

M

N P

Q

The Church-Rosser Theorem applies to more general sys-

tems than lambda-calculus.  It says that if there is any

rewriting procedure that makes it possible to transform a term

M into terms N and P, then there is a term Q into which both N

and P can be transformed by the same rewriting rules.  When

the rewriting rules involve replacements of parts of formulas,

this implies that the order in which the parts are replaced

does not make a difference.  In the lambda-calculus, the

rewriting rules are changes of bound variables and the rule

(β), and define a relation called  reduction .  The third rule

of the lambda-calculus, which is the reverse of rule (β), al-

lows the calculations of the values of functions to be re-

versed, and is called  expansion   .  When one term is transformed

into another by reduction and expansion steps, the terms are

said to be    convertible .  A corollary of the Church-Rosser The-

orem, which is often taken as another form of the theorem it-

self, says that if two terms are convertible, then there is a
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term to which both reduce.  Furthermore, for those lambda-

terms which have  normal forms    (i.e., which reduce to terms

which cannot be further reduced), the Church-Rosser Theorem

implies that normal forms are unique up to changes of bound

variables.  The Church-Rosser Theorem and its corollaries have

become important in term rewriting theory, where a system of

rewriting rules is not considered    coherent    unless it satisfies

the Church-Rosser property.

At about the same time, Church began to realize that, in

an important sense, the lambda-calculus is    complete   .  As a re-

sult of his work on representing arithmetic in Church’s origi-

nal system, Kleene had discovered a great many functions that

can be represented by lambda-terms.  Since the lambda-term

representing a function will calculate its values using a me-

chanical procedure (reduction using the rule (β)), any func-

tion which can be represented by a lambda-term is    effectively

calculable (mechanically calculable) .  As a result of Kleene’s

results and some similar results of Rosser, Church conjectured

that any effectively calculable function of natural numbers

can be represented by a lambda-term.  This conjecture was the

origin of    Church’s Thesis , and was published in (Church 1936

Unsolvable), where Church used the lambda-calculus to show

that there are unsolvable problems of elementary number the-

ory.  The more usual form of Church’s thesis, that all effec-

tively computable functions are (partial) recursive, is a con-

sequence of a proof in (Kleene 1936 λ-definability) that a
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function is recursive if and only if it can be represented by

a lambda-term.  The definition of a (partial) recursive func-

tion is due originally to Jacques Herbrand (1908—1931) and

Kurt Gödel (1906—1978), but it was Kleene who really developed

recursive function theory, beginning with (Kleene 1936 Gen-

eral).  Nevertheless, as Rosser recalls in (Rosser 1984),

Gödel did not believe Church’s thesis until after Alan Turing

(1912—1954) defined an abstract computer (now called a    Turing

machine   ) in (Turing 1936) and proved in (Turing 1937) that a

numerical function can be computed by a Turing machine if and

only if it is (partial) recursive.

What (Church 1936 Unsolvable) actually proved is that

there are classes of problems of the form P(n) for each natu-

ral number n such that there is no general algorithm which,

given n, will produce a solution to P(n).  The particular

problems which Church proved unsolvable are 1) to determine

for a given lambda-term whether it has a normal form, and 2)

to determine for two given lambda-terms whether they are con-

vertible.  These problems become problems of elementary number

theory when the terms are coded by natural numbers.  Church

called this coding «Gödel numbering» after the numbering in-

troduced in (Gödel 1931), but today we can just as well think

of the numerical coding that is automatically involved when

anything is represented in a computer.  Church used the re-

sults of (Church 1936 Unsolvable) to prove (Church 1936 Note;

Church 1936 Correction) that there is no algorithm that will
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decide whether a given formula of the first-order predicate

calculus is a theorem.

The lambda-calculus was also used (Church and Kleene

1937) to represent some of the transfinite ordinal numbers.

(Kleene 1938) separated representations of the transfinite or-

dinal numbers from the lambda-calculus.  These two papers sep-

arated the transfinite ordinal numbers from set theory, where

they had first appeared.  This was important for logic at the

time because Gerhard Gentzen (1909—1945) proved (Gentzen 1936)

the consistency of first order arithmetic using    transfinite

induction    on certain ordinal numbers (the ordinal numbers up

to ε0 ).  Separating these transfinite ordinal numbers from set

theory was important in understanding just what this proof in-

volved.  This work of Church and Kleene was the beginning of

the subject of    ordinal diagrams   , which is important in proof

theory.

These results of Church and his associates are all pre-

sented in (Church 1941).  Also found there is a variant of the

lambda-calculus which is closer to Curry’s combinatory logic

in that the combinator K can be defined in it.  Church called

this «λ-K-conversion», and it has now come to be called «the

λK-calculus»; Church’s original system is now called the «λI-

calculus».

The λK-calculus is formed by defining λx.M to be well formed

even if x does not have a free occurrence in M.
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Meanwhile, Curry looked again at the foundations of his

version of combinatory logic, and produced a revision of these

foundations and a new consistency proof of the underlying sys-

tem (Curry 1941 Revision; Curry 1941 Consistency).  Here con-

sistency was proved using the Church-Rosser Theorem, and com-

pleteness referred not to the representability of partial re-

cursive functions but to the provability of an equation be-

tween any two combinatory terms which represent convertible

lambda-terms.

During this same period, Rosser was working on the exact

relationship between lambda-calculus and combinatory logic.

This led to his paper (Rosser 1942), in which he defined ab-

straction in combinatory logic by a simple induction on the

length of the term.  (This definition also appeared in (Church

1941).)  When Curry saw this and reformulated it in terms of

the basic combinators he was using, he finally understood the

role of Schönfinkel’s S.  (Rosser used a set of atomic combi-

nators different from any used by Curry, and did not use S in

his definition.)  Although Curry saw this in the spring of

1942, it did not appear until (Curry 1949).

The definition is as follows:  [x]x is I; [x]a is Ka, where a

is a variable distinct from x or is an atomic constant; and

[x]MN is S([x]M)([x]N).  This definition, or a variant of it,

has become the standard way of defining abstraction in combi-

natory logic.
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This work by Rosser and Curry clarified the connection

between lambda-calculus and combinatory logic to such an ex-

tent that the two have been considered equivalent ever since.

Aside from the differences in the basic rules of term forma-

tion, the main differences concern the properties of the re-

duction and conversion (equality) relations.

The natural reduction for combinatory logic, called  weak

reduction   , does not allow replacements within the scope of an

abstraction operator; this is because [x]M is an abbreviation

for a term in which M and its subterms do not occur.  On the

other hand, in the natural reduction for lambda-calculus, re-

placements inside the scope of an abstraction are extremely

natural.  Thus, what is now called    λβ   -reduction  satisfies a

scheme which weak reduction does not, namely (ξ): if M reduces

to N, then λx.M reduces to λx.N.  (The same is true if

«reduces» is replaced by «converts».)  This gives us two kinds

of reduction and two kinds of conversion.

There is a third kind of each of reduction and conver-

sion:  Curry’s original papers all included postulates to sat-

isfy a    principle of extensionality    (ζ): if Mx converts to Nx,

where x does not occur free in M or N, then M converts to N.

It turns out that for conversion (but not reduction), (ζ) is

equivalent to the conjunction of (ξ) and (η): if x does not

occur free in M, then λx.Mx converts to M.  (Note that this

says that everything converts to an abstraction.)  If (η) for
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reduction is added to the postulates for λβ-reduction, the re-

sult is usually called   λβη    -reduction  or   λη   -reduction   .

Equality relations in combinatory logic equivalent to

λβ-conversion and λβη-conversion are relatively easy to de-

fine.  But reduction relations in combinatory logic corre-

sponding to the corresponding λ-reductions are not so easy.

Curry defined a combinatory reduction, called    strong reduction 

in (Curry and Feys 1958 § 6F) which is equivalent to λβη-re-

duction.  However, a completely satisfactory combinatory re-

duction equivalent to λβ-reduction has still not been found.

Curry was working on this with J. Roger Hindley (1939—present)

and Jonathan P. Seldin (1942—present) at the time of his death

in 1982 (see (Curry, Hindley, and Seldin 1984)), and Mohamed

Mezghiche (1953–present) in (Mezghiche 1984) gives a proposal

for this kind of reduction, and in (Mezghiche 1989) he gives a

partial characterization of terms in normal form, but for none

of the candidates for a combinatory beta-reduction do we yet

have a complete characterization of terms in normal form.

These reactions to the Kleene-Rosser paradox led to ideas

that are now considered fundamental in logic and computer sci-

ence, but they did not advance the original objectives of

Church and Curry in designing their original systems.  When

Church later came back to the elucidation of Frege’s ideas in

(Church 1951), he used a version of lambda-calculus with types

that he had originally introduced in (Church 1940).  The types

of this system differ from the types of (Russell 1908; White-
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head and Russell 1910-1913) in that the types are not natural

numbers but are more like the data types of modern computer

languages.  Type theory based on this kind of typed lambda-

calculus has since been studied by a number of people, includ-

ing Leon Henkin (1921—present), who proved its completeness

(Henkin 1950) in connection with the development of his proof

of completeness  of the first-order predicate calculus; see

also (Henkin 1963).  But the most important work on this type

theory was done by Peter B. Andrews (1937—present), who has

used it as the basis of a system of automatic theorem-proving

TPS; see (Andrews 1965; Andrews 1986), including the refer-

ences given there, for the type theory itself and (Andrews et

al. 1988) for TPS.

Church’s system has two atomic types, ο (the type of

propositions) and ι (the type of individuals).  Other atomic

types have been used in recent variants of typed lambda-calcu-

lus, and these atomic types are now thought of as the basic

types of most modern programming languages (such as Integer,

Real, Boolean, String, etc.)  The compound types are the type

of functions from α to β, which is now usually denoted

«α → β», but which Church denoted «(βα)».  Russell’s «first-

order (propositional) functions» correspond to terms of type

ι → ο, his «second-order (propositional) functions» correspond

to terms of type (ι → ο) → ο, etc.  The types limit the forma-

tion of terms, since to apply M to N, the type of N must be α

and the type of M must be α → β; then MN has type β.  If x is



1 8

a variable of type α and M is a term of type β, then λx.M has

type α → β.

One of the most important results concerning typed

lambda-calculus is that every typed term has a normal form

(i.e., it reduces to a term which cannot be further reduced).

This was originally proved by Alan Turing, who was a graduate

student at Princeton during 1936—38 and heard Church lecture

on the type theory in 1937—38, but Turing never published this

proof, and it was only published by Robin Gandy (1919—present)

in (Gandy 1980).  (The first published proof is due to Curry

(Curry and Feys 1958 Theorem 9F9); many other proofs have ap-

peared since.)

A stronger version of this result, known as the  strong

normalization theorem , says that every reduction sequence be-

ginning with such a term terminates in a term in normal form;

the standard method now used for proving it was introduced by

W. W. Tait (1929—present) in (Tait 1967).  For an exposition

of this proof, see (Hindley and Seldin 1986 Appendix 2).  This

strong normalization theorem is now considered necessary for

any variant of typed lambda-calculus.

Another important property of Church’s type theory is

that the typed lambda-terms can be interpreted in a set-theo-

retic universe, where the types are interpreted as sets of

terms and α → β is interpreted as the set of all types whose

domain is α and whose range is a subset of β.
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This kind of interpretation is impossible for pure

lambda terms, since in a set-theoretic universe not all terms

M and N can be interpreted in such a way that M is interpreted

as a function and N as an object in its domain.  The restric-

tion on application terms with types guarantees that this kind

of interpretation is always possible.

Meanwhile, Curry had been working on an idea that turned

out to be very similar (although that was not to be clear for

two decades); he called it the «theory of functionality», and

it was about categories that turned out to be similar to

Church’s types.  But Curry started earlier, presenting the

idea to the American Mathematical Society in 1930 and publish-

ing it in (Curry 1934 Functionality) and (Curry 1936).

Curry’s idea differed from Church’s type theory in that in-

stead of having the types assigned by the rules of formation,

they are assigned by the deductive rules of the system.  There

is a term F with the property that FαβX means that X is a

function from α to β, so that Fαβ corresponds to Church’s type

α → β.  Curry originally defined F in such a way that FαβX

converts to (∀ x)(αx ⊃ β (Xx)); hence, FαβX actually says some-

thing more general than that X is a function from α to β; it

says that X is a function whose domain includes α and that un-

der X the image of α is included in β.  In the theory of func-

tionality, variables are not assigned fixed types; rather,

types are assigned to variables by assumptions.  So whereas in

Church’s system, if x is a variable of type β, the term λx.x
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has type β → β for this particular type β, in Curry’s theory of

functionality, I has type Fαα for    any    type α.

Even before Kleene and Rosser discovered their inconsis-

tency, Curry had planned to use the theory of functionality to

help avoid paradoxes.  After his study of their paradox, Curry

developed a plan for trying to find “partially typed systems”

(systems that are untyped in their basic formation rules but

use the theory of functionality as an important part of their

deductive rules) that could be proved consistent and would

serve the purpose of his original system.  He called this kind

of system    illative combinatory logic .  To prove systems con-

sistent, he planned to use the techniques of (Gentzen 1934).

He discussed these plans in (Curry 1942 Combinatory; Curry

1942 Advances).

The plans were to look at systems based on three different

sets of logical primitives.  The first was to use as a primi-

tive the term F of the theory of functionality.  The second

was to use a term Ξ representing    restricted generality   ; ΞXY

has the logical properties of (∀ x)(Xx ⊃  Yx).  The third was

to use primitives for the universal quantifier and implica-

tion, the theory of  universal generality   .  Curry thought at

the time that these three systems came in increasing strength.

Curry did not get back to any of this until the 1950s,

when he had already started working on (Curry and Feys 1958).
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He had convinced Robert Feys (1889—1961) to work with him on

this project because there was to be an emphasis on exposi-

tion, and Feys was very good at writing exposition.

He discovered that the most general possible form of the the-

ory of functionality was inconsistent (Curry 1955).

This is the form of the theory in which any term can occur as

a type.

It was not long before he found some versions of the theory

which are consistent (Curry 1956).  These results are all re-

ported in (Curry and Feys 1958, Chapters 9—10).

The most important of these versions is the one called  basic

functionality    in (Curry and Feys 1958, Chapter 9).  Its char-

acteristic is that terms can only occur as types if they are

formed the way the types of Church’s type theory are formed,

from atomic types by the construction of Fαβ from α and β.

Curry was still thinking of the statement that term X has type

α as αX, the application of α to X.  The way types are formed

in the basic theory prevents any reductions in αX that do not

occur in X, but that is an accident of the basic theory, and

in (Curry and Feys 1958, Chapter 10), there is an inference

from KβX (saying that X has type Kβ)to β.

In the mid-1960s, Curry had the idea of restricting the

use of conversion rules in the theory of functionality so that

conversions would have to take place either entirely within

the type or entirely within the term.  This made the theory of

functionality less a foundational system for parts of mathe-
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matics and more like the rules of term formation in Church’s

type theory, and in fact this version of the theory of func-

tionality is now called  type assignment .

Type assignment for the lambda-calculus is defined as a

system of natural deduction in the sense of (Gentzen 1934),

where the assumptions assign types to variables.  There are

two rules:  one for introducing the arrow type

(Γ, x : α … M : β ⇒  Γ … (λx.M) : α → β, provided that x does

not occur free in Γ) and one for eliminating it (M : α → β,

N : α … MN : β).  In combinatory logic, the rule for intro-

ducing the arrow type is replaced by an axiom scheme assigning

types to the atomic combinators:  I : α → α, K : α → (β → α),

and S : (α → (β → γ)) → ((α → β) → (α → γ)).

Although all partial recursive functions can be repre-

sented in the untyped lambda-calculus, not all such functions

can be represented by terms to which types are assigned.  This

is not only because any numerical function represented by a

typed term must be a total function; there are total recursive

functions which cannot be represented by a term with a type.

Which functions can be represented by typed terms depends on

exactly how the numbers and functions are represented and what

types they have.

If the Church numerals are used and no special arithmetic

types are introduced, then the functions which can be repre-

sented are given by Helmut Schwichtenberg (1942–present) in

(Schwichtenberg 1975-6).  In this case, each of the Church nu-
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merals has each type of the form (α → α) → (α → α).  On the

other hand, numerals can be represented by new constants 0 and

σ (for zero and successor), provided that a primitive recur-

sion operator or an iterator (a mapping from these new con-

stants to the corresponding terms used in the Church numerals)

is also introduced as a new constant, and an atomic type N for

the natural numbers can also be introduced; in this case, we

can represent more numerical functions, and, in fact, what we

have is the system T of functionals of finite type introduced

by Gödel for interpreting arithmetic in (Gödel 1958).  For an

exposition of this interpretation see (Hindley and Seldin 1986

Chapter 18).

In the 1950s, Curry noticed that if the terms are removed

and the arrow interpreted as implication, then the axiom

schemes for the basic combinators become well-known schemes

for the implication fragment of intuitionistic propositional

logic (and in fact form a complete set of axiom schemes for

this logic) and the rule for eliminating the arrow types be-

comes the rule of modus ponens; see (Curry and Feys 1958 §9E).

At the end of the 1960s, a number of people realized indepen-

dently that it is possible to think of the types as formulas

and of the terms as proofs, and, in doing this, extended the

idea to other connectives and quantifiers :  W. A. Howard

(1926–present), N.G. de Bruijn (1918—present), H. Läuchli

(1933–present), and Dana S. Scott (1932—present); for

references see (Hindley and Seldin 1986 p. 194).  Joachim
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Lambek (1922—present) had a similar idea about the same time,

but he emphasized the relation to category theory and was

concerned with equivalence classes of proofs regarded as

being, in some sense, the same proof; see (Lambek 1968; Lambek

1969; Lambek 1972; Lambek 1974).  Of the papers that

introduced this idea of  formulas-as-types   , (Howard 1980) has

become so well known that the idea is often called the «Curry-

Howard isomorphism», even though this does some injustice to

the others.  This idea has turned out to be very fruitful in

proof theory.

After the publication of (Curry and Feys 1958), Curry

turned his attention to the theory of restricted generality;

see (Curry 1960; Curry 1961).  Further work done with Jonathan

P. Seldin (Seldin 1968, Chapters 4—5; Curry et al. 1972 Chap-

ters 15—16) obtained consistency proofs for systems strong

enough to interpret first-order logic, and indicated that for

these systems there is not that much difference between re-

stricted generality and universal generality.  An extension in

which it is possible to mention propositions but not quantify

over them is (Curry 1973); this system has interesting models,

which Peter Aczel (1941–present) calls    Frege struc      tures ; see

(Aczel 1980; Scott 1975).  Extensions to higher order logic

have been made by Martin W. Bunder (1942—present), who has

been interested in interpreting set theory in this kind of

system and who has based all of his work on the theory of

restricted generality; see (Bunder 1969; Bunder 1983 Predi-
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cate; Bunder 1983 One; Bunder 1983 Set; Bunder 1983 Weak; Bun-

der 1986/7).  In (Bunder 1984), he showed that category theory

(which cannot be easily interpreted in set theory) can be in-

terpreted in a system of restricted generality.

Frederic B. Fitch (1908—1987) also worked on systems of

of logic based on combinatory logic.  But Fitch’s systems, al-

though provably consistent, have never attracted much atten-

tion, and they are not very strong.  See (Fitch 1936; Fitch

1963; Fitch 1974; Fitch 1980 Consistent; Fitch 1980 Exten-

sion).  Another logician who worked on type-free systems of

logic was W. Ackermann (1896—1962), but his systems, although

provably consistent, never caught on any more than Fitch’s

systems did; see (Ackermann 1950; Ackermann 1952—1953).

Still another approach to logic based on lambda-calculus

is due to Solomon Feferman (1928—present), who has combinators

which are not defined for all arguments.  He has systems that

can easily be shown to be conservative extensions of systems

known to be consistent and are hence adequate for standard

theories.  See (Hindley and Seldin 1986 pp. 295ff) and the

references given there.

In Feferman’s systems, Ka (and hence Kax) and Sab are defined

whenever a and b are, but Sabx is not always defined even when

a and b are.  See the discussion of    uniformly reflective

structures    below.

Additional work on lambda-calculus and logic has been

done by Adrian Rezus (1949—present); see (Rezus 1981).
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For some logicians, the interpreting of logic and set

theory in combinatory logic or lambda-calculus was much less

important than interpreting the type-free lambda-calculus in

set theory.  For these logicians, such an interpretation is

necessary for the lambda-calculus to be more than an empty

formalism. This was not a consideration for most logicians ac-

tive in the 1930s, which was before most model theory had been

developed, but by the 1950s it had become a major issue, espe-

cially in the United States.  This is probably due to the in-

fluence of Alfred Tarski (1901–1983), the founder of model

theory, who travelled from Poland to the U.S.A. to attend a

conference scheduled to begin on 1 September 1939 and was un-

able to return to Poland after World War II broke out.  As a

result, he settled in the U.S.A. and had many students there

at a time when a lot of government money was becoming avail-

able for scientific research.  Thus, by the 1960s, the lack of

models for the lambda-calculus had become a major obstacle to

its acceptance among many logicians.

It is, of course, easy to create trivial models of the

lambda-calculus:  the    term models , which are equivalence

classes of terms under conversion.  But these trivial models

are not satisfying as an indication of the    meaning    of the

lambda-calculus to logicians who need a model for such a mean-

ing.  At first, the problem of finding a non-trivial  model

for the lambda-calculus must have seemed hopeless.  The fact

that every term in the lambda-calculus can be applied to any
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other term means that the domain of any model, D, would have

to be isomorphic to the set of all functions from D into it-

self, but Georg Cantor (1845—1918) had already proved that im-

possible.  But at the end of the 1960s, Dana S. Scott realized

that it is not necessary for a model of the lambda-calculus

that D be isomorphic to the set of  all    functions from D into

itself; it is enough that D be isomorphic to a suitably rich

subset of the set of functions from D to itself.  Scott’s idea

was to use the set of    continu    ous    functions from D to itself

for a set D with a suitable topology.  Currying identifies the

set of functions from the set of ordered pairs of elements of

D into D with the set of functions from D to itself; this sug-

gests using a class of topological spaces that form a carte-

sian closed category.  Scott used the category of continuous

lattices with an induced topology, and the model that results

is usually called the D∞  model.  For references, see (Hindley

and Seldin 1986 p. 154).  He and Christopher Strachey

(1916—1975) developed this idea into the subject of

denotational se      mantics ; see (Stoy 1977) and the works cited

there.

Scott’s model was studied mainly by Martin Hyland

(1949—present) and Christopher P. Wadsworth (1946—present).

Their work led to new syntactical insights.   Among others who

have studied this model are Luis E. Sanchis (1926—present),

Mario Coppo (1947—present), Mariangiola Dezani-Ciancaglini

(1946—present), Simonetta Ronchi della Rocca (1946—present),
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C. P. K. Koymans (1957—present), M. Zacchi (1947—present),

Gordon Plotkin (1946–present), M. B. Smyth (dates?), and Henri

Volken (1945—present); for references, see (Hindley and Seldin

1986 p. 154; Barendregt 1984 Chapter 5 and Part V).

Since Scott’s first model, others have been introduced.

These include the model DA  due independently to Gordon

Plotkin and Erwin Engeler (1930–present), studied by Guiseppe

Longo (1947—present), the model Pω due to Gordon Plotkin and

Dana S. Scott, the model Tω  due to Gordon Plotkin and studied

by Henk Barendregt (1947—present) and Guiseppe Longo, the Böhm

tree model, due to Henk Barendregt (Barendregt 1984 §18.3),

the filter models, due to Henk Barendregt, Mario Coppo,

Mariangiola Dezani-Ciancaglini, and Betty Venneri

(1951—present), the hypergraph model, due to Luis E. Sanchis,

and the information systems model due to Dana S. Scott.

Different kinds of models can be constructed by changing the

set theory, as was done by Michael von Rimscha (1952—present).

Still another alternative is to abandon the requirement that

application always be defined; such partial models are the

uniformly reflec      tive struc      tures    of H. R. Strong (1942—present)

and E. G. Wagner (1931—present), which were intended to be

axiomatizations of abstract recursion theory, and which,

again, show the relationship between lambda-calculus and the

theory of effective computability.  For a list of these models

with their properties and references, see (Hindley and Seldin

1986 §12F).  See also (Barendregt 1984 Chapter 5 and Part V).
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Finally, it is also natural to model lambda-calculus in

category theory instead of set theory; work on this has been

done by J. Lambek, Dana S. Scott, and C. P. J. Koymans (among

other people); see (Lambek and Scott 1986) and the references

given there.

As more and more models appeared, the question arose of

what it means to be a model of combinatory logic or the

lambda-calculus.  Finding a suitable definition turned out to

be more complicated than first anticipated, and the definition

of a model of the lambda-calculus is different (and more com-

plicated) that that of a model of combinatory logic.

Among the people who have worked on this are Albert R. Meyer

(1941—present), J. Roger Hindley, Guiseppe Longo, Henk Baren-

dregt, C. P. J. Koymans, and Kim Bruce (1948—present).  See

(Meyer 1982; Hindley and Seldin 1986 p. 128) and the refer-

ences given in the latter.

Models for typed lambda-terms or type assignment are much

easier to construct, since, as pointed out above, the usual

ideas from set theory are sufficient; the basic types are as-

signed sets, and the compound type α → β is assigned to the

set of all functions from the set assigned to α to the set as-

signed to β.  (Hindley 1983 Completeness) proves the complete-

ness of type assignment to lambda terms in terms of this very

natural semantics, and (Hindley 1983 Curry’s) proves complete-

ness with respect to a semantics based on models of the

lambda-calculus.
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We have already seen (in the discussion of Church’s the-

sis above) that the lambda-calculus is a kind of model for ef-

fectively computable functions.  For this reason if for no

other, it would seem natural to expect that lambda-calculus

would have become connected with electronic computers.  There

is a connection, but much of its importance has only been seen

in the last couple of decades.  Since then, however, the con-

nection to computers has come to overshadow all other aspects

of lambda-calculus.

It is true that Curry, who took a leave of absence from

The Pennsylvania State University to do applied mathematics

for the U. S. Government during 1942—1946, became a member of

the ENIAC team in late 1945 and was, for a period in 1946, the

Acting Chief of the Computing Laboratory.  As a result of this

experience, he wrote a number of papers on computing, includ-

ing one (Curry 1954) which proposed using combinators to com-

bine programs into larger ones.  But this does not seem to

have had much influence on later developments in computers.

In 1960, John McCarthy (1927—present), who was working on

LISP (McCarthy 1960), a language originally designed for sym-

bolic computation using list representation (McCarthy 1981),

needed a notation for functions and borrowed Church’s lambda

notation.  But this was not really a use of the lambda-calcu-

lus; in fact, the theoretical basis for LISP, to the extent

that it has one, is Kleene’s theory of recursive functions
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(McCarthy 1963).  Nevertheless, LISP was the first  functional 

programming language.

The idea behind functional languages is that instead of

giving instructions about storing and modifying values, as is

done in traditional,  imperative    languages, functional lan-

guages are based on the evaluation of expressions.

For example, to program the factorial function, whose value

for n is n(n — 1)(n — 2)…1, it is necessary to give the com-

mands

INTEGER FUNCTION FAC(X)

INTEGER N

FAC = 1

FOR I = 1 TO N FAC = FAC*I.

(Here the first two lines declare the types of the variables,

the third line initializes the value of the function, the last

line does the work of the computation, and N is the number for

which we wish to evaluate FAC.  In some languages a separate

program must be written for each value of N.)  In a functional

language, on the other hand, a complete definition using re-

cursion can be as easy as the following:

fac n →    if    zero n    then    1    else    n * (fac (n — 1))    fi

Here the function zero takes an integer as argument and re-

turns true if the integer is 0 and false otherwise, and  if  a

then    b    else    c    fi    evaluates b if the boolean value of a is true

and evaluates c if the value of a is false.
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In an imperative language, there are often    side effects ;

a command may have an unintended effect on another part of the

program (by changing a value stored in a particular location),

and avoiding these side effects is one of the problems in-

volved in writing a good program.  On the other hand, in a

pure functional language   , in which evaluation of expressions

is all there is, there are no side effects.  Most functional

languages are not pure, but make some compromise with the

principles of pure functional languages for convenience of ei-

ther use or implementation, and these languages do have some

side-effects.

Clearly, the lambda-calculus is a paradigm of a pure

functional language.

The first publications to suggest the importance of this

use lambda-calculus in programming were by Corrado Böhm

(1923—present) and Peter Landin (dates?); see (Böhm  1966;

Landin 1964; Landin 1965).  About the same time, Christopher

Strachey proposed the use of lambda-calculus for semantics

(Strachey 1966).

In the evaluation of expressions, it is often necessary

to find an instance of a general pattern rather than a partic-

ular expression.

In the functional definition of the factorial function given

above, it was necessary to determine whether a natural number

is zero.  But in a function on lambda terms implementing β-re-
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duction, for example, it is necessary to determine whether or

not an expression has the form (λx.M)N, which means that the

test here is for a pattern.

This is known as    pattern-matching , and is a feature of almost

all new functional programming languages.  It was introduced

independently by R. Burstall (1934—present) and David Turner

(1946—present); see (Burstall 1969; Turner 1976).

John Backus (1924—present) emphasized the limitations of

imperative languages and raised the level of awareness of

functional programming in (Backus 1978), a paper which had a

major impact.

Up until this point, there was interest in the idea of

functional languages, but efficient implementations were a ma-

jor problem.  This began to change about 1980, when larger

computers capable of serious symbolic calculation began to be-

come available and affordable.  But David Turner also helped

things along with a new idea for more efficiency (Turner

1979).

Turner’s idea concerned the way terms are represented in the

computer.  The natural way is to represent them as trees.  But

this can involve considerable duplication, for example in the

reduction of SXYZ to XZ(YZ), the tree representing Z is dupli-

cated.  Even more duplication may be required in conversions

involving the fixed-point operator, converting YF to F(YF).

Turner proposed replacing these duplicated parts of the trees
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with pointers to a single location, so that parts of the tree

are not duplicated but stored only once.

This is now the standard method of implementing functional

languages.

Another question that arises in the implementation of

functional languages is the order in which evaluation steps

take place.  The Church-Rosser Theorem (see above) tells us

that it makes no difference    in theory    in which order replace-

ments are made in reducing terms, but  in practice  the order in

which replacements are made can make a big difference in effi-

ciency.  Furthermore, an order which is efficient in one con-

text may not be efficient in another.  For this reason, Landin

proposed an order he called «lazy evaluation» (Landin 1965),

which has become one of the standard strategies of evaluation.

In lazy evaluation, functions are evaluated symbolically be-

fore the values of their arguments are evaluated (unless the

values of the arguments are needed for the symbolic evaluation

of the function).  In the pure lambda-calculus, lazy evalua-

tion means always carrying out the replacement as far left as

possible.  Thus, lazy evaluation reduces KxU to x immediately

regardless of what happens to U; in fact, U may not have a

normal form.

But lazy evaluation conflicts with  strictness .  Strictness

means that if any argument of a function has no value, then

the function has no value.
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Thus, Kx is not strict in ordinary lambda calculus, as the

previous example shows.  Alan Mycroft (1956—present) has in-

troduced (Mycroft 1981) «strictness analysis», which enables a

compiler to combine these two approaches in an efficient man-

ner.

A background to this work on efficient evaluation of func-

tional languages is the work done on various strategies of

lambda-reduction.  Since the 1960s, work in this area has been

done by Gérard Berry (1948—present), Jean-Jacques Lévy

(1947—present), J. W. Klop (1945—present), and Jan Bergstra

(1951—present), and related work on reduction has been done by

J. R. Hindley and Gerd Mitschke (1941–present); see

(Barendregt 1984 Part Chapter 3 and III) and the references

given there.

For a general discussion of modern implementation tech-

niques, see (Peyton Jones 1987).

Just as the untyped lambda-calculus is a paradigm for a

pure functional language, so typed lambda-calculus or lambda-

calculus with type assignment is a paradigm for the typing

discipline in programming languages in general.  This means

that questions arising in connection with types in general can

be treated in terms of type assignment.  This matter was first

taken up in computer science by the functional programming

community, and, in particular, by Robin Milner (1934—present)

in (Milner 1978).
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This paper deals with the problem of a program that is essen-

tially the same over any of several types but which, in the

older imperative languages must be rewritten for each separate

type.  For example, a sort routine may be written with essen-

tially the same code except for the types for integers,

booleans, and strings.  It is clearly desirable to have a

method of writing a piece of code that can accept the specific

type as an argument.  Milner developed his ideas in terms of

type assignment to lambda-terms.  It is based on a result due

originally to Curry (Curry 1969) and Hindley (Hindley 1969)

known as the    principal type-scheme    theorem, which says that

(assuming that the typing assumptions are sufficiently well-

behaved) every term has a    principal type-scheme   , which is a

type-scheme such that every other type-scheme which can be

proved for the given term is obtained by a substitution of

types for type variables.  This use of type schemes allows a

kind of generality over all types, which is known as  polymor- 

phism   .

When type assignment is considered in connection with

functional languages it is often necessary to adopt new primi-

tive types and terms for constructions which can be defined in

terms of ordinary lambda-terms.  One of these constructions is

the    cartesian product type   , whose terms are ordered pairs.

Pairs and their projection functions have been represented in

pure lambda-calculus since the 1930s (Curry, Hindley, and

Seldin 1972 § 13A3), but they do not always have the most de-
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sirable properties with respect to types.  In addition, there

is a property, the  surjective    property of pairing, which is

desirable in connection with category theory and which says,

in effect, that every term is a pair; formally it says that

〈   fst    X,    snd    X〉 converts to X, where    fst    and    snd    are the left

and right projections respectively.  In pure lambda-calculus,

no representation of pairs and projections functions satisfies

the surjective pairing property, and (Klop 1980) showed that

adding pairs and projection functions with the surjective

property causes the Church-Rosser Theorem to fail.  Garrel

Pottinger (1944—present) showed (Pottinger 1981) that for

typed terms, surjective-pairing is compatible with the Church-

Rosser theorem.  More recently, Klop and Roel C. de Vrijer

(1949–present) have shown (Klop and de Vrijer 1989) that cer-

tain special cases of the surjective property are consistent

with the Church-Rosser theorem in the untyped lambda-calculus;

one of the cases is that in which X is required to be a term

in normal form.

Many of the newer functional languages are typed.

A number of functional languages have been introduced

over the years; the most important (and most easily used) date

from about 1980 or later.  (Landin 1964) introduced the    SECD

machine   , and Landin went on to introduce the functional lan-

guage ISWIM (Landin 1966).  David Turner created three pure

functional languages:  SASL (Turner 1976), KRC (Turner 1981),

and Miranda (Turner 1985).  A variant of LISP called SCHEME
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was introduced by Guy L. Steele, Jr. (1954—present) (Steele

and Sussman 1978).  Meanwhile, the language HOPE was intro-

duced by R. M. Burstall, D. B. MacQueen (1946—present), and D.

T. Sannella (1956—present); see (Burstall, MacQueen, and San-

nella 1980).  Another important functional language is ML

(Milner 1984), which is the meta-language of LCF (an interac-

tive system for reasoning about computable functions).  ML in-

cludes the basic system of type assignment to lambda-terms and

combinatory terms, and includes an algorithm for calculating

the types.

Richard Statman (1946—present) has reversed the usual proce-

dure of calculating the types of terms and calculated the

terms assigned to particular types.  This has led to some in-

teresting results; see (Statman 1980; Statman 1981).

A more recent functional language is HASKELL (named for

Haskell B. Curry), which is due to a team headed by Paul Hudak

(1952—present) and Philip Wadler (1956—present); see (Hudak

and Wadler 1988).

These languages are all intended to be compiled (or in-

terpreted) on a standard computer, whose design has more in

common with imperative languages than with functional lan-

guages.  But some people have been designing hardware to eval-

uate the expressions of functional languages directly.  These

machines have all been combinator reducers.  Two important

projects of this kind are NORMA at Burroughs (Scheevel 1986),
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which has since been discontinued, and the CURRY chip at MITRE

Corporation (Ramsdell 1986).

Another approach to the relation between lambda-calculus

and computers, which is based on considerations from category

theory, is due to P.-L. Curien (1953—present); see (Curien

1986).

The connections between lambda-calculus and computers

have led to some important extensions of typed lambda calculus

and type assignment.  One important such extension is the    sec-   

ond-order polymorphic typed lambda-calculus   , also known as the

«second-order lambda-calculus».  It was introduced indepen-

dently by Jean-Yves Girard (1947—present) (Girard 1971; 1972)

and John C. Reynolds (1935—present) (Reynolds 1974).  Under

the formulas-as-types notion, it represents a special kind of

second-order logic:  propositional logic with a second-order

quantifier over propositions.  The strong normalization theo-

rem holds for the second-order lambda calculus.

In the second-order lambda-calculus, it is often impor-

tant to indicate the type a variable is assumed to have.

Thus, instead of «λx.M», one writes «λx : α . M».  There are

new abstraction and application operators for types (although

now it is common to use the same notation as for the old

ones), and the introduction and elimination rules for the sec-

ond-order quantifier are M : α … λa.M : (∀ a)α (provided that

a is a type variable not free in any assumption) and

M : (∀ a)α … Mβ : [β/a]α, where β is any type and [β/a]α is
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the result of substituting β for a in α.  As an example, from

λx : a . x : a → a, (which can be proved without assumption),

we can use the introduction rule to deduce λa . λx : a . x :

(∀ a)(a → a).  Then, for any type β, we can use the elimina-

tion rule to deduce (λa . λx : a . x)β : β → β.  There is a

second kind of λβ-reduction that allows us to reduce (λa . λx

: a . x)β to λx : β . x.

Another interesting extension of ordinary type assignment

is due to Mario Coppo and Mariangiola Dezani-Ciancaglini, and

involves a new type constructor, the    intersection  of two types

(Coppo and Dezani-Ciancaglini 1978).  In this system, both the

normalization theorem (every term with a type has a normal

form) and its converse (every term in normal form has a type)

hold.  However, intersection types do not correspond to con-

junctions under the formulas-as-types notion (Hindley 1984).

In further work with Patrick Sallé (dates?) and Betty Venneri,

they showed that if this system is further extended by a  uni- 

versal type    which is a type of every term, then the nature of

the types (and in particular how the universal type occurs in

them) can be used to characterize terms that have a normal

form and terms that have a «head normal form», where a head

normal form is a term that cannot be reduced by applying a re-

duction rule at the head of the term (Coppo and Dezani-

Ciancaglini and Venneri 1981; Sallé 1980).  The completeness

theorem is given in (Hindley 1982).  I. Margaria (1948—pre-
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sent) has also done work on these types.  For more sources see

(Hindley and Seldin 1986 p. 223).

The intersection types obey the following rules:  M : α, M : β

… M : α ∩ β and M : α ∩ β … M : α and α ∩ β … M : β.  The rea-

son that the formulas-as-types notion fails is that the term

does not change in these rules, and so these terms cannot cod-

ify proofs involving conjunction.

Another extension of ordinary type assignment involves

replacing the arrow type with the    dependent function type   .

This type has the property that the type of the value of a

function depends on the argument as well as on the type of the

argument.

The dependent function type is often written (∀ x : A)B.

Using the syntax of the second-order lambda-calculus to indi-

cate the types of the bound variables, its introduction and

elimination rules are Γ, x : A … M : B ⇒  Γ …

(∀ x : A)(λx : A . B), provided that x does not occur free in

Γ, and M : (∀ x : A)B, N : A … MN : [N/x]B.  The arrow type

A → B can be defined as (∀ x : A)B for a variable x which does

not occur free in B.

Curry had the idea for this type in 1956, and the idea is

mentioned in (Curry, Hindley, and Seldin 1972 pp. 343,

353ff.), where it is called    generalized functionality   , but the

first real work on Curry’s version of this idea was done by

Jonathan P. Seldin in (Seldin 1979).  But by then the depen-

dent function type had already been used in the AUTOMATH pro-
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ject (de Bruijn 1970; de Bruijn 1980), which was a system in

which proofs could be verified by writing them in the lan-

guage; using the formulas-as-types idea, if the coded version

of the proof was grammatically correct, then the proof was

valid.  (Other people who have worked on the AUTOMATH project

are Roel C. de Vrijer, L. S. van Benthem Jutting (1927—pre-

sent), R. P. Nederpelt (1942—present), Diederik T. van Daalen

(1949—present), I. Zandleven (dates?), and J. Zucker

(1942—present); see (de Bruijn 1980) for references).  The de-

pendent function type is also important in the type theory of

Per Martin-Löf (1942–present) in his intuitionistic theory of

types, which is a predicative intuitionistic type theory

(Martin-Löf 1975; 1984).  The type theory has, in turn, been

used as the basis of the    Nuprl  proof development system (using

the formulas-as-types idea) by Robert L. Constable

(1942—present) and his associates at Cornell (Constable et al.

1986).

A    proof development system    differs from an automatic theorem

prover in that in it the user selects the result to be proved

and the basic strategy for carrying out the proof on an inter-

active basis, and the computer does the work of carrying out

the strategy.  At each stage the user selects the next  tactic 

to be applied, where a tactic is, in a sense, a derived rule

run backwards.

Because the type theory of Martin-Löf is predicative and the

second-order lambda-calculus is not, it is not possible to in-
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terpret the latter in the former.  An impredicative system

similar to Martin-Löf’s type theory in which the second-order

lambda-calculus can be interpreted is the    calculus of con- 

structions    of Thierry Coquand (1961—present) (Coquand and Huet

1988), for which the strong normalization theorem has been

proved and which has been proposed as the basis of a proof de-

velopment system similar to Nuprl.  Coquand and Gérard Huet

(1947—present) are continuing work on the calculus of con-

structions at INRIA.

Although the lambda-calculus did not lead to the kind of

foundation for logic and mathematics for which its founders

were searching, it has shown itself to be extremely useful in

several areas of logic and computer science.
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