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The | anbda-cal culus is a formalismfor representing func-
tions.

By the second half of the nineteenth century, the concept
of function as used in mathenatics had reached the point at
whi ch the standard notati on had becone anbi guous.

For exanpl e, consider the operator P defined on real
functions as foll ows:
PLF(x)] = [ X ; (0 for x 0
Lt '(0) for x =0
What is P[f(x + 1)]? To see that this is anbiguous, let f(x)

=x% . Then if g(x) = f(x + 1), P[g(x)] = P[x% + 2x + 1]

x + 2. But if h(x) = P[f(x)] =x, then h(x + 1) =x + 1

P[g(x)]. This ambiguity has actually led to an error in the

published literature; see the discussion in (Curry and Feys

1958 pp. 81-82).

As the above expl anation shows, it is possible to clarify
t he anbi guity by addi ng a paragraph of explanation or sone

ot her ad hoc device every tinme the notation is used. But this



was not sufficient for those who were constructing systens of
synbolic logic for various reasons. The first of these was
Cottlob Frege (1848-1925), who was trying to show that mat he-
matics is all a part of logic and wanted a systemati c notation
for everything, including functions.

As a part of his formal system he defined (Frege 1967)

the graph (Werthverl auf, course-of-values) of a function f,

whi ch he denoted by «t f(€)». Thus, the course of values of

t he squaring function would be denoted «é(ez) » or «d(az) »

(the Greek letters here being bound variables). It is
extensional in the sense that ’s(s2 - 4¢) = b(a-[a - 4]) ,
whi ch follows since x2 - 4x = x(x - 4). In (Frege 1893),

Frege defined the application of a graph & f(€) to an argunent
A, which he denoted «AnkEf(€)». In general, &1 is defined so
that if { is the graph of a function, then &nl is the val ue of
that function for the argunment & while if { is not the graph
of a function then {nl is the graph of a propositiona
function which is always false. Note that &nl is defined for
all objects & and ¢ of the system The principal theorem
about this function is f(a) = ankf(g). This function was
extended to functions of nore than one argunent in (Frege
1893, 836) by the following trick: if F(x,y) is a function of
two argunments, it is replaced by a function f of one argunent
such that f(a) is the function of y given by F(a,y), and
f(a)(b) is F(a,b). Thus, for exanmple, if F(Xx,y) is x —vy,

then f(2) =2 —y, and f(2)(3) =2 —3 = —1



The next formalismto deal with a notation for functions
was that of Bertrand Russell (1872-1970), see (Russell 1908).
It was later incorporated in his work with Alfred North Wite-
head (1861-1947), (Witehead and Russell 1910-1913). He used
a notation isonorphic to Frege's, but only for propositional
functions; other functions were treated as speci al cases of
rel ations.

In the notation for propositional functions, Frege's

«n» was replaced by «e», but the types restricted it so that

it becane essentially class (or set) nenbership.

In 1920, Moses Schonfinkel (1889—€. 1942) gave a sem nar
talk at Gottingen, |later published as (Schonfinkel 1924), that
carried this analysis of notations for functions a stage fur-
ther. Shonfinkel’s objective was to reduce the nunber of
primtives in a systemlike that of (Witehead and Russel
1910-1913) or |ike that devel oped by David H | bert (1862-1943)
in his lectures on the foundations of mathenati cs.

In his system which he called a function cal cul us

(Funkti onenkal kil ), there is only one operation that forns

conpound terns: it is the one Schonfinkel wote «fx», repre-
senting the application of a function f to an argunment x; it
is defined for all terns. Schonfinkel adopted the trick of
Frege given above for reducing functions of nore than one ar-
gunent to functions of one argunent, although he seens to have
devel oped it independently of Frege. In this notation, it is

conmon to wite «fxyz» for «((fx)y)z».



The system has three basic constants, C, S, and U The

constants C and S are characterized by transformations, so

that Cxy = x. This neans that for any terma, Ca is the func-

tion which, for any x, has the value a; Ca is thus the con-

stant function whose value is a. The transformation rule for

Sis nore conplicated: Sxyz = (xz)(yz). Oher functions of a

simlar nature can be defined in terns of Cand S, for exam

ple, SCCx = (Cx)(Cx) = x, so SCCis the identity function, I.

Q her functions which Schonfinkel defined in this way are a

commuter T with the property that Tfxy = fyx and a comnpositor

Z with the property that Zfgx = f(gx). The constant U has a

different character: it represents a |ogical operator that

Schonfinkel wrote «fx |X gx» and interpreted to nean «for all

X, hot both fx and gx».

Later in the 1920s, Haskell B. Curry (1900-2982) was | ed
to essentially the sane system He had started reading
(Wi tehead and Russel |l 1910-1913) while he was still an under-
graduate, and he noticed that in the very first chapter, which
deals with propositional logic, there are two rules of infer-
ence; the first, nodus ponens, which says that fromp O q and
p we nmay deduce q, is very sinple inits formal structure, but
the second rule, which allows the substitution of any formul a
for a propositional variable, is much nore conplicated. (The
ki nd of conplexity is that which would be noticed by sonebody
trying to wite a conputer programfor this formalism) 1In

the m d-1920s, Curry decided to try to break down this rule of



substitution into sinpler rules. In 1926, he realized that he
could do this with essentially the sane fornmalismas Schon-

finkel had introduced; Curry called it conbinatory logic. He

did not discover Schonfinkel’s paper until Novenber 1927.
Curry was later to beconme so conpletely identified with conbi -
natory logic that the nethod of treating functions of nore
than one argunment in terns of functions of one argunent, which
Frege used and which Curry took from Schonfinkel, has becone
known as currying.
In a series of papers (Curry 1929; Curry 1930; Curry

1931; Curry 1932; Curry 1933; Curry 1934 Properties; and Curry

1934 Foundations), he devel oped an axi omati c theory based on

this formalismup to the point of including set theory. In

(Curry 1929), he pointed out that for any term X forned from

the atom c constants and variables xq , X2 , ., Xy, thereis

atermY forned fromthe constants al one such that Yxq; Xp ..Xp

= X, and in (Curry 1930) he gave axions to nake this Y

uniquely determned (in terns of the equality that the system

axiomatized). In (Curry 1933), he defined the term[xq , x>

v -»Xp ] X to be this termY. It follows by a sinple
substitution that for any terms My , M , ..., My, YM| M .M,
equals the result of substituting M , M , ., M, for x1 , X
, -» Xp respectively in X, and hence [x71 ,X2 ,.,Xy ] X behaves
like a multiple version of Frege's graph. The |ogica
connectives and quantifiers were defined as atom c constants

wi t hout special properties with respect to equality; in (Curry



1930) the constants are I for the universal quantifier and P

for inmplication, so that «(Ox)A» would be represented in the

system by «[M([x]A)» and «A 0O B» by «PAB». The atonic

constants Curry had discovered on his own were | (identity)

with Ix = x, C (commutor) with Cfxy = fyx, B (conpositor) with

Bfgx = f(gx), and W (diagnalizer) with Wix = fxx. Hs

di scovery of Schonfinkel’s paper gave him Schénfinkel’'s C,

which he called «K», and al so Schénfinkel’s S, now witten

«S». In (Curry 1929), the atom c constants are K and S, but

Curry did not feel that he understood the neaning of S as well

as he understood that of the other atomic constants, and so

the atomi c constants for the rest of the papers in the series

are B, C, K, and W. (Actually, Curry only started using

special type for the conbinators in (Curry and Feys 1958), but

t he usage has beconme standard so | will followit here.)

Meanwhi | e, Al onzo Church (1903-present) wanted to con-
struct a nodification of Frege’s systemin which the use of
free vari abl es woul d be avoided. One of his goals was that
“every conbi nation of synbols belonging to our system if it
represents a proposition at all, shall represent a particul ar
proposi tion, unanbi guously, and wi thout the addition of verbal
expl anations.” (He also proposed to avoid the paradoxes of
set theory and logic by restricting the | aw of excluded m d-
dle.) Church nmade Frege’'s treatnent of functions basic to his
systemin the sense that terns were formed fromthe vari abl es

by two operations: (1) application, which is denoted «M\» as




in the work of Schonfinkel and Curry, which represents the ap-
plication of a function Mto an argunment N and which is de-

fined for any two terms Mand N, and (2) abstraction, which is

denoted «Ax. M> and is defined (in Church’s original system

for any termMand for any variable x which occurs free in M

Church’s rules of inference included one for changi ng bound

vari abl es and another for the cal cul ati on of the values of a

function by a rule which is now called rule (B): (AX. MN can
be replaced by the result of substituting Nfor x in M Like
Curry, he represented the |ogical connectives and quantifiers
by atom c constants. He published this systemin (Church
1932—2933), but nuch of his notivation did not becone clear
until later papers, such as (Church 1951; Church 1951-2954).
Church’s original notation was actually nore conplicated

than this, in that he wote «{{M(N)» instead of «M\». The no-

tati on shown here is that of later work in the |anbda-cal cu-

lus, starting with (Church 1941).

During this period, Church had two graduate students,
St even Col e Kl eene (1909-present) and John Barkl ey Rosser
(1907-1989). Kleene studied arithnmetic in Church’s system
and wote (Kl eene 1934) and (Kl eene 1935).

Kl eene used a representation of the natural nunbers suggested

originally by Church; 1 is represented by Axy.xy, 2 by

AXy. xX(xy), 3 by Axy.x(x(xy)), etc. Under this representation,

0 woul d have to be Axy.y, but in Church’s original systemthis

is not a well-formed term since x does not occur (free) iny.



In versions of the | anbda-cal culus used today, this is a well-
formed term and these ternms, when used to represent the natu-

ral nunmbers (including 0) are not called the Church nunerals.

Rosser began work on a different version of conbinatory
logic, which led to his dissertation (Rosser 1935). |n 1934,
he and Kl eene di scovered sonet hing i nportant about both the
system of |ogic of Church and the conbinatory |ogic of Curry:

both systens are inconsistent in that they admt Richard s

par adox (Kl eene and Rosser 1935). Curry then began a thorough
study of their paradox in detail; this led first to a new ex-
position of the paradox (Curry 1941 Paradox) and then to a
new, sinpler contradiction (Curry 1942 Inconsi stency), which

has since conme to be known as Curry’s paradox.

Curry’s paradox can be stated fairly easily using the

fixed-point operator (which Curry originally called the para-

doxi cal conbinator). This is the termY, which can be defined

to be Ax. (Ay.x(yy))(Ay.x(yy)) and has the property that YF
converts to F(YF), thus making YF a fixed point of F

Clearly, if Nis negation, then YNis the fixed point of nega-
tion and converts to N(YN), which is itself paradoxical. But
Curry’s paradox does not require negation; inplication is
enough. Suppose that in a system of conbinatory |ogic or A-
calculus with an atom c constant P denoting inplication, there
is added a predicate «provability», with the follow ng proper-
ties: 1) the schene P(PX(PXY))(PXY), which is a well known

tautology that is also a theoremof intuitionistic proposi-



tional logic, is provable for any two terns X and Y, 2) the

rul e of nodus ponens (from PXY and X to conclude Y) is satis-

fied, and 3) any termconvertible to a provable termis prov-

able; then the systemis inconsistent in the sense that any
termY is provable. For let Y be any termand let X be

Y(AX. Px(PxY)). Then X converts to PX(PXY). It follows that

the term P(PX(PXY)) (PXY), which is provabl e by hypothesis,

converts to PX(PXY), which is therefore provable, and since

this converts to X, it, too, is provable. Hence, by nobdus po-

nens, PXY is provable, and, by nbdus ponens again, so is Y.

On the ot her hand, Church had good reasons to believe
that the part of the systens dealing with the representation
of functions was consistent. The correspondi ng part of conbi -
natory | ogi c had been proved consistent in (CQurry 1930); it
was only the system obtai ned by addi ng the additional postu-
|ates of (CQurry 1934 Properties) that was inconsistent.

(Kl eene and/or Rosser told Curry that it was (Qurry 1934 Prop-
erties) that gave themwhat they needed for their proof of in-
consi stency.) Church therefore had reason to believe that the
corresponding part of his systemwas al so consistent. Thus,
he separated fromthe rest of the system of (Church 1932-1933)
the part dealing with representing functions and cal cul ati ng
their value, and he called it the «l anbda-cal cul us», and he
and Rosser proved it consistent in (Church and Rosser 1936) by

a result known as the Church-Rosser Theorem
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The Church- Rosser Theorem applies to nore general sys-
tens than | anbda-calculus. It says that if there is any
rewiting procedure that makes it possible to transforma term
Minto ternms Nand P, then there is atermQinto which both N
and P can be transforned by the sane rewiting rules. Wen
the rewiting rules involve replacenents of parts of fornulas,
this inplies that the order in which the parts are replaced
does not make a difference. |n the |anbda-cal culus, the
rewiting rules are changes of bound variables and the rule
(B), and define a relation called reduction. The third rule
of the | anbda-cal culus, which is the reverse of rule (B), al-
lows the cal culations of the values of functions to be re-
versed, and is called expansion. Wen one termis transformed
i nto anot her by reduction and expansion steps, the terns are
said to be convertible. A corollary of the Church-Rosser The-
orem which is often taken as another formof the theoremit-

self, says that if two terns are convertible, then there is a
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termto which both reduce. Furthernore, for those | anbda-

ternms which have normal forns (i.e., which reduce to terns

whi ch cannot be further reduced), the Church-Rosser Theorem

inmplies that normal forns are uni que up to changes of bound

vari abl es. The Church-Rosser Theoremand its corollaries have

beconme inmportant in termrewiting theory, where a system of

rewiting rules is not considered coherent unless it satisfies

t he Church- Rosser property.

At about the same tine, Church began to realize that, in
an inportant sense, the |anbda-calculus is conplete. As a re-
sult of his work on representing arithnetic in Church’s origi-
nal system Kl eene had di scovered a great many functions that
can be represented by | anbda-terns. Since the | anbda-term

representing a function will calculate its values using a ne-

chani cal procedure (reduction using the rule (B)), any func-

tion which can be represented by a | anbda-termis effectively

cal cul abl e (nechanically calculable). As a result of Kl eene's

results and sonme simlar results of Rosser, Church conjectured
that any effectively cal cul abl e function of natural nunbers
can be represented by a | anbda-term This conjecture was the

origin of Church’'s Thesis, and was published in (Church 1936

Unsol vabl e), where Church used the | anbda-cal cul us to show
that there are unsol vabl e probl ens of el enmentary nunber the-
ory. The nore usual formof Church’s thesis, that all effec-

tively conputable functions are (partial) recursive, is a con-

sequence of a proof in (Kl eene 1936 A-definability) that a
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function is recursive if and only if it can be represented by
a lanbda-term The definition of a (partial) recursive func-
tionis due originally to Jacques Herbrand (1908-2931) and
Kurt Godel (1906—2978), but it was Kl eene who really devel oped
recursive function theory, beginning with (Kl eene 1936 Gen-
eral). Nevertheless, as Rosser recalls in (Rosser 1984),
Godel did not believe Church’s thesis until after A an Turing
(1912-2954) defined an abstract conputer (now called a Turing
machine) in (Turing 1936) and proved in (Turing 1937) that a
nunerical function can be conputed by a Turing machine if and
only if it is (partial) recursive.
What (Church 1936 Unsol vabl e) actually proved is that

there are classes of problens of the formP(n) for each natu-

ral nunber n such that there is no general algorithm which

given n, will produce a solution to P(n). The particular

probl ens whi ch Church proved unsol vable are 1) to determ ne

for a given |l anbda-termwhether it has a nornmal form and 2)

to determine for two given | anbda-terns whether they are con-

vertible. These problens becone problens of elenentary nunber

theory when the terns are coded by natural nunbers. Church

called this coding «Gddel nunbering» after the nunbering in-

troduced in (Gddel 1931), but today we can just as well think

of the nunerical coding that is automatically involved when

anything is represented in a conputer. Church used the re-

sults of (Church 1936 Unsol vable) to prove (Church 1936 Note;

Church 1936 Correction) that there is no algorithmthat wll



deci de whether a given fornula of the first-order predicate
calculus is a theorem

The | anbda- cal cul us was al so used (Church and Kl eene
1937) to represent sonme of the transfinite ordinal nunbers
(Kl eene 1938) separated representations of the transfinite or-
di nal nunbers fromthe | anbda-cal culus. These two papers sep-
arated the transfinite ordi nal nunbers fromset theory, where
they had first appeared. This was inportant for logic at the
ti me because CGerhard Gentzen (1909—1945) proved (CGentzen 1936)
the consistency of first order arithmetic using transfinite
i nduction on certain ordinal nunbers (the ordinal nunbers up
to gg). Separating these transfinite ordinal nunbers from set
theory was inportant in understanding just what this proof in-
vol ved. This work of Church and Kl eene was the begi nni ng of

t he subject of ordinal diagrans, which is inmportant in proof

t heory.

These results of Church and his associates are all pre-
sented in (Church 1941). Also found there is a variant of the
| anbda- cal cul us which is closer to Qurry’s conbinatory |ogic
in that the conbinator K can be defined in it. Church called
this «A-K-conversion», and it has now cone to be called «the
AK-cal cul us»; Church’s original systemis now called the «Al-
cal cul us».

The AK-calculus is forned by defining Ax. Mto be well forned

even if x does not have a free occurrence in M

13
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Meanwhi l e, CQurry | ooked again at the foundations of his
version of conbinatory |ogic, and produced a revision of these
foundati ons and a new consi stency proof of the underlying sys-
tem (Curry 1941 Revision; CQurry 1941 Consistency). Here con-
si stency was proved using the Church-Rosser Theorem and com
pl eteness referred not to the representability of partial re-
cursive functions but to the provability of an equation be-
tween any two conbinatory terns which represent convertible
| anbda- t er rs.

During this sane period, Rosser was working on the exact
rel ati onshi p between | anbda-cal cul us and conbi natory | ogi c.
This led to his paper (Rosser 1942), in which he defined ab-
straction in conbinatory logic by a sinple induction on the
length of the term (This definition also appeared in (Church
1941).) Wen Curry saw this and refornulated it in terns of
t he basic conbinators he was using, he finally understood the
role of Schonfinkel’s S. (Rosser used a set of atom c conbi-
nators different fromany used by Curry, and did not use S in
his definition.) A though CQurry saw this in the spring of
1942, it did not appear until (Curry 1949).

The definition is as follows: [x]x is I, [x]a is Ka, where a

is a variable distinct fromx or is an atom c constant; and

[XIMN is S([X]M([x]N. This definition, or a variant of it,

has beconme the standard way of defining abstraction in conbi-

natory | ogic.



This work by Rosser and Curry clarified the connection

bet ween | anbda- cal cul us and conbi natory logic to such an ex-

tent that the two have been consi dered equi val ent ever since.

Aside fromthe differences in the basic rules of term forma-

the main differences concern the properties of the re-

duction and conversion (equality) relations.

The natural reduction for conbinatory |ogic, called weak
reducti on, does not allow replacenents within the scope of an
abstraction operator; this is because [x]Mis an abbreviation
for atermin which Mand its subterns do not occur. On the
ot her hand, in the natural reduction for |anbda-cal culus, re-
pl acenents inside the scope of an abstraction are extrenely
natural. Thus, what is now called AB-reduction satisfies a
scheme which weak reduction does not, nanely (&: if Mreduces
to N, then Ax. Mreduces to AXx.N. (The sane is true if
«reduces» is replaced by «converts».) This gives us two kinds
of reduction and two kinds of conversion

There is a third kind of each of reduction and conver-
sion: Curry’'s original papers all included postulates to sat-

isfy a principle of extensionality ({: if M converts to Nx,

where x does not occur free in Mor N, then Mconverts to N
It turns out that for conversion (but not reduction), ({ is
equi valent to the conjunction of (& and (n): if x does not

occur free in M then Ax. M converts to M (Note that this

says that everything converts to an abstraction.) |If (n) for
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reduction is added to the postulates for AB-reduction, the re-
sult is usually called ABn-reduction or An-reduction

Equality relations in conbinatory logic equivalent to
AB- conversi on and APn-conversion are relatively easy to de-
fine. But reduction relations in conbinatory |logic corre-
sponding to the correspondi ng A-reductions are not so easy.

Curry defined a conbinatory reduction, called strong reduction

in (Curry and Feys 1958 § 6F) which is equivalent to ABn-re-

duction. However, a conpletely satisfactory conbinatory re-

duction equivalent to AB-reduction has still not been found.

Curry was working on this with J. Roger Hindley (1939—present)

and Jonathan P. Seldin (1942—present) at the tine of his death

in 1982 (see (Curry, Hindley, and Seldin 1984)), and Mhaned

Mezghi che (1953-present) in (Mezghi che 1984) gives a proposa

for this kind of reduction, and in (Mezghi che 1989) he gives a

partial characterization of terns in normal form but for none

of the candi dates for a conbinatory beta-reduction do we yet

have a conpl ete characterization of terns in normal form

These reactions to the Kl eene-Rosser paradox |ed to ideas
that are now consi dered fundanental in |ogic and conputer sci-
ence, but they did not advance the original objectives of
Church and Curry in designing their original systens. Wen
Church later canme back to the elucidation of Frege's ideas in
(Church 1951), he used a version of |anbda-cal culus with types
that he had originally introduced in (Church 1940). The types
of this systemdiffer fromthe types of (Russell 1908; Wiite-



head and Russell 1910-1913) in that the types are not natura

nunbers but are nore |like the data types of nodern conputer

| anguages. Type theory based on this kind of typed | anbda-

cal cul us has since been studi ed by a nunber of peopl e,

i ncl ud-

ing Leon Henkin (1921-—present), who proved its conpl et eness

(Henkin 1950) in connection with the devel opnent of his proof

of conpleteness of the first-order predicate cal cul us;

see

al so (Henkin 1963). But the nost inportant work on this type

theory was done by Peter B. Andrews (1937—present), who has

used it as the basis of a system of automatic theorem proving

TPS; see (Andrews 1965; Andrews 1986), including the refer-

ences given there, for the type theory itself and (Andrews et

al. 1988) for TPS.

Church’s system has two atonmic types, o (the type of

propositions) and | (the type of individuals). Oher atonic

types have been used in recent variants of typed |anbda-cal cu-

lus, and these atonic types are now t hought of as the basic

types of nobst nobdern progranmi ng | anguages (such as | nteger,

Real , Bool ean, String, etc.) The conpound types are the type

of functions froma to B, which is now usually denoted

«a - P», but which Church denoted «(Pa)». Russell’s «first-

order (propositional) functions» correspond to terns of type

Il - 0, his «second-order (propositional) functions» correspond

to terns of type (1-0) -0, etc. The types lint the fornma-

tion of terns, since to apply Mto N, the type of N nust be a

and the type of Mnust be a - B; then MN has type B. If x is

17
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a variable of type a and Mis a termof type B, then Ax.M has

type a - B.

One of the nost inportant results concerning typed
| anbda-cal culus is that every typed termhas a normal form
(i.e., it reduces to a termwhich cannot be further reduced).
This was originally proved by Al an Turing, who was a graduate
student at Princeton during 193638 and heard Church | ecture
on the type theory in 1937—38, but Turing never published this
proof, and it was only published by Robin Gandy (1919—present)
in (Gandy 1980). (The first published proof is due to Curry
(CQurry and Feys 1958 Theorem 9F9); many ot her proofs have ap-

peared since.)
A stronger version of this result, known as the strong

nornmal i zati on theorem says that every reduction sequence be-

ginning with such a termterninates in a termin normal form

t he standard method now used for proving it was introduced by
W W Tait (1929—present) in (Tait 1967). For an exposition

of this proof, see (Hindley and Seldin 1986 Appendix 2). This
strong nornalization theoremis now considered necessary for

any variant of typed |anbda-cal cul us.

Anot her inportant property of Church’s type theory is

that the typed | anbda-terns can be interpreted in a set-theo-

retic universe, where the types are interpreted as sets of

terns and a - B is interpreted as the set of all types whose

domain is a and whose range is a subset of f



This kind of interpretation is inpossible for pure

| anbda terms, since in a set-theoretic universe not all terns

Mand N can be interpreted in such a way that Mis interpreted

as a function and N as an object in its domain. The restric-

tion on application ternms with types guarantees that this kind

of interpretation is always possible.

Meanwhi | e, CQurry had been working on an idea that turned
out to be very simlar (although that was not to be clear for
two decades); he called it the «theory of functionality», and
it was about categories that turned out to be simlar to
Church’s types. But Curry started earlier, presenting the
idea to the Anerican Mathematical Society in 1930 and publi sh-
ing it in (Curry 1934 Functionality) and (Curry 1936).

Curry's idea differed from Church’s type theory in that in-

stead of having the types assigned by the rules of formation,

they are assigned by the deductive rules of the system There

is atermF with the property that FaBX neans that X is a

function froma to B, so that Fap corresponds to Church’'s type

o> B Curry originally defined F in such a way that FapX
converts to (0Ox)(ox [P (Xx)); hence, FapX actually says sone-
thing nore general than that X is a function froma to B it

says that X is a function whose domain includes a and that un-

der X the image of a is included in B. In the theory of func-

tionality, variables are not assigned fixed types; rather

types are assigned to variables by assunptions. So whereas in

Church’'s system if x is a variable of type B, the termAx. x
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has type B> B for this particular type B, in Curry's theory of

functionality, | has type Faa for any type a.

Even before Kl eene and Rosser discovered their inconsis-
tency, Curry had planned to use the theory of functionality to
hel p avoi d paradoxes. After his study of their paradox, Curry
devel oped a plan for trying to find “partially typed systens”
(systens that are untyped in their basic formation rul es but
use the theory of functionality as an inportant part of their
deductive rules) that could be proved consistent and woul d
serve the purpose of his original system He called this kind

of systemillative conbinatory logic. To prove systens con-

sistent, he planned to use the techni ques of (Gentzen 1934).
He di scussed these plans in (CQurry 1942 Conbi natory; Curry
1942 Advances).

The plans were to | ook at systens based on three different

sets of logical primtives. The first was to use as a prim -

tive the termF of the theory of functionality. The second

was to use a term = representing restricted generality; =XY

has the | ogical properties of (Ox)(Xx O Yx). The third was
to use primtives for the universal quantifier and inplica-

tion, the theory of universal generality. Curry thought at

the tine that these three systens canme in increasing strength.
Curry did not get back to any of this until the 1950s,
when he had already started working on (Curry and Feys 1958).



He had convi nced Robert Feys (1889-4961) to work with himon

this project because there was to be an enphasis on exposi-

tion, and Feys was very good at writing exposition
He di scovered that the nbst general possible formof the the-
ory of functionality was inconsistent (Curry 1955).

This is the formof the theory in which any term can occur as

a type.
It was not |ong before he found sone versions of the theory
whi ch are consistent (CQurry 1956). These results are all re-
ported in (CQurry and Feys 1958, Chapters 9-10).

The nost inportant of these versions is the one called basic

functionality in (Curry and Feys 1958, Chapter 9). |Its char-

acteristic is that terns can only occur as types if they are

formed the way the types of Church’'s type theory are forned,

fromatom c types by the construction of FaB froma and B.

Curry was still thinking of the statenent that term X has type

o as aX, the application of a to X. The way types are forned

in the basic theory prevents any reductions in aX that do not

occur in X, but that is an accident of the basic theory, and

in (Curry and Feys 1958, Chapter 10), there is an inference

from KBX (saying that X has type KB)to .

In the md-1960s, Curry had the idea of restricting the
use of conversion rules in the theory of functionality so that
conversions would have to take place either entirely within
the type or entirely within the term This nmade the theory of

functionality less a foundational systemfor parts of nathe-
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matics and nore like the rules of termformation in Church’s
type theory, and in fact this version of the theory of func-

tionality is now called type assignnent.

Type assignnent for the | anbda-cal culus is defined as a

system of natural deduction in the sense of (Gentzen 1934),

where the assunptions assign types to variables. There are

two rules: one for introducing the arrow type

(ry, x: aM: BOT FE (MM : a-pB, provided that x does

not occur free in ') and one for elimnating it (M: o> B,

N: ok M: B). In conbinatory logic, the rule for intro-

ducing the arrow type is replaced by an axi om schene assi gni ng

types to the atonmic conbinators: 1 : a-a, K: a - (B - 0,

and S: (a - (B -V)) - ((a - B - (a - V)).

Al though all partial recursive functions can be repre-
sented in the untyped | anbda-cal culus, not all such functions
can be represented by terns to which types are assigned. This
is not only because any nunerical function represented by a
typed termnust be a total function; there are total recursive
functions which cannot be represented by a termw th a type.
Whi ch functions can be represented by typed terns depends on
exactly how the nunbers and functions are represented and what
types they have.

If the Church nunerals are used and no special arithnetic

types are introduced, then the functions which can be repre-

sented are given by Hel nut Schwi chtenberg (1942-present) in

(Schwi cht enberg 1975-6). In this case, each of the Church nu-



neral s has each type of the form(a - a) - (a - a). On the
ot her hand, nunerals can be represented by new constants 0 and
o (for zero and successor), provided that a primtive recur-
sion operator or an iterator (a napping fromthese new con-
stants to the corresponding terms used in the Church nunerals)
is also introduced as a new constant, and an atonmic type N for
the natural nunbers can al so be introduced; in this case, we
can represent nore nunerical functions, and, in fact, what we
have is the system T of functionals of finite type introduced
by Gbdel for interpreting arithnetic in (Gddel 1958). For an
exposition of this interpretation see (H ndley and Sel din 1986

Chapter 18).

In the 1950s, Curry noticed that if the terns are renoved

and the arrow interpreted as inplication, then the axi om

schenmes for the basic conbi nators becone wel | -known schenes
for the inplication fragment of intuitionistic propositional
logic (and in fact forma conplete set of axi omschenes for

this logic) and the rule for elimnating the arrow types be-

cones the rul e of nodus ponens; see (Curry and Feys 1958 89E)

At the end of the 1960s, a nunber of people realized indepen-
dently that it is possible to think of the types as fornul as
and of the terns as proofs, and, in doing this, extended the
idea to other connectives and quantifiers : W A Howard
(1926-present), N.G de Bruijn (1918-present), H Lauchl
(1933—-present), and Dana S. Scott (1932—present); for

references see (Hndley and Seldin 1986 p. 194). Joachim
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Lanbek (1922—present) had a simlar idea about the sane tine,
but he enphasi zed the relation to category theory and was
concerned wi th equival ence cl asses of proofs regarded as

bei ng, in sonme sense, the same proof; see (Lanmbek 1968; Lanbek
1969; Lanbek 1972; Lanbek 1974). O the papers that

i ntroduced this idea of fornul as-as-types, (Howard 1980) has

beconme so well known that the idea is often called the «Curry-
Howar d i sonor phi snm», even though this does sone injustice to
the others. This idea has turned out to be very fruitful in
proof theory.

After the publication of (Curry and Feys 1958), Curry
turned his attention to the theory of restricted generality;
see (Curry 1960; Curry 1961). Further work done with Jonat han
P. Seldin (Seldin 1968, Chapters 4-5; Curry et al. 1972 Chap-
ters 15—-16) obtai ned consistency proofs for systens strong
enough to interpret first-order logic, and indicated that for
t hese systens there is not that nuch difference between re-
stricted generality and universal generality. An extension in
which it is possible to nmention propositions but not quantify
over themis (Curry 1973); this systemhas interesting nodels,

whi ch Peter Aczel (1941-present) calls Frege structures; see

(Aczel 1980; Scott 1975). Extensions to higher order |ogic
have been made by Martin W Bunder (1942—present), who has
been interested in interpreting set theory in this kind of
system and who has based all of his work on the theory of

restricted generality; see (Bunder 1969; Bunder 1983 Predi -
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cate; Bunder 1983 One; Bunder 1983 Set; Bunder 1983 Wak; Bun-
der 1986/7). In (Bunder 1984), he showed that category theory
(whi ch cannot be easily interpreted in set theory) can be in-
terpreted in a systemof restricted generality.

Frederic B. Fitch (1908-2987) al so worked on systens of
of logic based on conbinatory logic. But Fitch's systens, al-
t hough provably consi stent, have never attracted much atten-
tion, and they are not very strong. See (Fitch 1936; Fitch
1963; Fitch 1974; Fitch 1980 Consistent; Fitch 1980 Exten-
sion). Another |ogician who worked on type-free systens of
| ogic was W Ackermann (1896—2962), but his systens, although
provably consi stent, never caught on any nore than Fitch's
systens did; see (Ackermann 1950; Ackermann 1952-1953).

Still another approach to |ogic based on | anbda-cal cul us
is due to Sol onon Feferman (1928—present), who has conbi nators
whi ch are not defined for all argunents. He has systens that
can easily be shown to be conservative extensions of systens
known to be consistent and are hence adequate for standard
theories. See (H ndley and Seldin 1986 pp. 295ff) and the
ref erences given there.

In Feferman's systens, Ka (and hence Kax) and Sab are defined

whenever a and b are, but Sabx is not always defined even when

a and b are. See the discussion of uniformy reflective

structures bel ow
Addi tional work on | anbda-cal cul us and | ogi ¢ has been

done by Adrian Rezus (1949-—present); see (Rezus 1981).
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For sone logicians, the interpreting of |ogic and set
theory in conbinatory |ogic or |anbda-cal cul us was nuch | ess
important than interpreting the type-free | anbda-cal culus in
set theory. For these |ogicians, such an interpretation is
necessary for the | anbda-cal culus to be nore than an enpty
formalism This was not a consideration for nost |ogicians ac-
tive in the 1930s, which was before nost nodel theory had been
devel oped, but by the 1950s it had beconme a major issue, espe-
cially in the United States. This is probably due to the in-
fluence of Al fred Tarski (1901-1983), the founder of nodel
theory, who travelled fromPoland to the U S A to attend a
conference schedul ed to begin on 1 Septenber 1939 and was un-
able to return to Poland after Wrld War Il broke out. As a
result, he settled in the U S A and had nany students there
at a tine when a | ot of government noney was becom ng avail -
able for scientific research. Thus, by the 1960s, the |ack of
nodel s for the | anbda-cal cul us had beconme a naj or obstacle to
its acceptance anong many | ogi ci ans.

It is, of course, easy to create trivial nodels of the

| anbda- cal culus: the term nodels, which are equival ence

cl asses of terns under conversion. But these trivial nodels
are not satisfying as an indication of the neaning of the

| anbda- cal cul us to | ogicians who need a nodel for such a nean-
ing. At first, the problemof finding a non-trivial node

for the | anbda-cal cul us nmust have seened hopel ess. The fact

that every termin the | anbda-cal cul us can be applied to any
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ot her termmeans that the domain of any nodel, D, would have
to be isonorphic to the set of all functions fromD into it-
self, but Georg Cantor (1845-2918) had already proved that im
possible. But at the end of the 1960s, Dana S. Scott realized
that it is not necessary for a nodel of the |anbda-cal cul us
that D be isonorphic to the set of all functions fromD into
itself; it is enough that D be isonorphic to a suitably rich
subset of the set of functions fromDto itself. Scott’s idea
was to use the set of continuous functions fromD to itself
for a set Dwith a suitable topology. Currying identifies the
set of functions fromthe set of ordered pairs of elenents of
Dinto Dwith the set of functions fromDto itself; this sug-
gests using a class of topological spaces that forma carte-
sian closed category. Scott used the category of continuous
lattices with an induced topol ogy, and the nodel that results
is usually called the D, nodel. For references, see (H ndley
and Seldin 1986 p. 154). He and Chri stopher Strachey
(1916—1975) devel oped this idea into the subject of

denot ati onal semantics; see (Stoy 1977) and the works cited

t here.
Scott’s nodel was studied nmainly by Martin Hyl and
(1949—present) and Christopher P. Wadsworth (1946—present).
Their work led to new syntactical insights. Anong ot hers who
have studied this nodel are Luis E. Sanchis (1926—present),
Mari o Coppo (1947—present), Mariangi ol a Dezani - C ancagl i ni

(1946—present), Sinonetta Ronchi della Rocca (1946—present),



C. P. K Koynans (1957—present), M Zacchi (1947—present),
CGordon Plotkin (1946-present), M B. Snyth (dates?), and Henri
Vol ken (1945—present); for references, see (Hindley and Seldin
1986 p. 154; Barendregt 1984 Chapter 5 and Part V).

Since Scott's first nodel, others have been introduced.
These include the nodel Dp due independently to Gordon
Pl otkin and Erwi n Engel er (1930-present), studied by CGui seppe
Longo (1947—present), the nmodel Pw due to Gordon Pl otkin and
Dana S. Scott, the nodel T® due to Gordon Plotkin and studied
by Henk Barendregt (1947—present) and Qui seppe Longo, the Bdhm
tree nodel, due to Henk Barendregt (Barendregt 1984 8§18. 3),
the filter nodels, due to Henk Barendregt, Mario Coppo,
Mar i angi ol a Dezani - C ancaglini, and Betty Venneri
(1951—present), the hypergraph nodel, due to Luis E. Sanchis,
and the information systens nodel due to Dana S. Scott.
Different kinds of nodels can be constructed by changi ng the
set theory, as was done by M chael von Rinscha (1952—present).
Still another alternative is to abandon the requirenent that
application always be defined; such partial nodels are the

uniformy reflective structures of H R Strong (1942—present)

and E. G Wagner (1931-present), which were intended to be

axi omati zations of abstract recursion theory, and which,

again, show the relationship between | anbda-cal cul us and the
theory of effective conputability. For a list of these nodels
with their properties and references, see (H ndley and Seldin

1986 812F). See al so (Barendregt 1984 Chapter 5 and Part V).
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Finally, it is also natural to nodel |anbda-calculus in

category theory instead of set theory; work on this has been

done by J. Lanbek, Dana S. Scott, and C. P. J. Koymans (anong

ot her people); see (Lanbek and Scott 1986) and the references

gi ven there.

As nore and nore nodel s appeared, the question arose of
what it neans to be a nodel of conbinatory logic or the
| anbda-cal culus. Finding a suitable definition turned out to
be nore conplicated than first anticipated, and the definition
of a nodel of the |anbda-calculus is different (and nore com
plicated) that that of a nodel of conbinatory | ogic.

Anong t he peopl e who have worked on this are Al bert R Myer

(1941—present), J. Roger Hindley, Guiseppe Longo, Henk Baren-

dregt, C. P. J. Koymans, and Kim Bruce (1948—present). See

(Meyer 1982; Hindley and Seldin 1986 p. 128) and the refer-

ences given in the latter.

Model s for typed | anbda-terns or type assignnent are nuch
easi er to construct, since, as pointed out above, the usual

ideas fromset theory are sufficient; the basic types are as-

signed sets, and the conpound type a - 3 is assigned to the
set of all functions fromthe set assigned to a to the set as-

signed to B. (H ndley 1983 Conpl et eness) proves the conpl et e-

ness of type assignnent to |anbda terns in terns of this very
natural semantics, and (H ndley 1983 Curry’s) proves conpl ete-
ness with respect to a semantics based on nodel s of the

| anbda- cal cul us.
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W have al ready seen (in the discussion of Church’ s the-
sis above) that the | anbda-calculus is a kind of nodel for ef-
fectively conputable functions. For this reason if for no
other, it would seemnatural to expect that |anbda-cal cul us
woul d have beconme connected with electronic conputers. There
is a connection, but much of its inportance has only been seen
in the last couple of decades. Since then, however, the con-
nection to conputers has cone to overshadow all other aspects
of | anbda- cal cul us.

It is true that Curry, who took a | eave of absence from
The Pennsylvania State University to do applied mathematics
for the U S. Governnent during 1942-1946, becane a nenber of
the ENNAC teamin late 1945 and was, for a period in 1946, the
Acting Chief of the Conputing Laboratory. As a result of this
experience, he wote a nunber of papers on conputing, includ-
ing one (Curry 1954) which proposed using conbinators to com
bi ne prograns into | arger ones. But this does not seemto
have had much influence on | ater devel opnents in conputers.

In 1960, John McCarthy (1927—present), who was working on
LI SP (McCarthy 1960), a |anguage originally designed for sym
bolic conputation using list representation (MCarthy 1981),
needed a notation for functions and borrowed Church’s | anbda
notation. But this was not really a use of the |anbda-cal cu-
lus; in fact, the theoretical basis for LISP, to the extent

that it has one, is Kleene's theory of recursive functions



(McCarthy 1963). Nevertheless, LISP was the first functional

pr ogranm ng | anguage.

The i dea behi nd functional |anguages is that instead of
giving instructions about storing and nodifying values, as is
done in traditional, inperative |anguages, functional |an-
guages are based on the eval uation of expressions.

For exanple, to programthe factorial function, whose val ue

for nis n(ln —1)(n —2).1, it is necessary to give the com

mands
| NTEGER FUNCTI ON FAC( X)
| NTEGER N
FAC = 1
FOR1 =1 TO N FAC = FAC*I.

(Here the first two lines declare the types of the variabl es,
the third Iine initializes the value of the function, the |ast
line does the work of the conputation, and N is the nunber for
which we wish to evaluate FAC. In sonme |anguages a separate
program nmust be witten for each value of N.) 1In a functiona
| anguage, on the other hand, a conplete definition using re-
cursion can be as easy as the foll ow ng:

fac n - if zeronthen 1 elsen * (fac (n —1)) fi_
Here the function zero takes an integer as argunent and re-
turns true if the integer is 0 and false otherwise, and if a

then b else ¢ fi evaluates b if the bool ean value of a is true

and evaluates c if the value of a is false.
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In an inperative | anguage, there are often side effects;

a command nmay have an uni ntended effect on another part of the
program (by changing a value stored in a particular |ocation),
and avoi ding these side effects is one of the problens in-
volved in witing a good program On the other hand, in a

pure functional |anguage, in which evaluation of expressions

is all there is, there are no side effects. Mbst functional

| anguages are not pure, but nmake sone conprom se with the
principles of pure functional |anguages for conveni ence of ei-
ther use or inplenentation, and these | anguages do have sone
si de-effects.

Clearly, the | anbda-calculus is a paradigmof a pure
functional | anguage.

The first publications to suggest the inportance of this
use | anbda-cal cul us in programm ng were by Corrado Bohm
(1923—present) and Peter Landin (dates?); see (Bohm 1966;
Landi n 1964; Landin 1965). About the sane tinme, Christopher
Strachey proposed the use of |anbda-cal culus for semantics
(Strachey 1966).

In the evaluation of expressions, it is often necessary
to find an instance of a general pattern rather than a partic-
ul ar expressi on.

In the functional definition of the factorial function given

above, it was necessary to determ ne whether a natural nunber

is zero. But in a function on |anbda terns inplenmenting B-re-



duction, for exanple, it is necessary to deternine whether or
not an expression has the form (Ax. M N, which neans that the
test here is for a pattern.

This is known as pattern-matching, and is a feature of al nost

all new functional programm ng | anguages. It was introduced
i ndependently by R Burstall (1934—present) and David Turner
(1946—present); see (Burstall 1969; Turner 1976).

John Backus (1924—present) enphasized the limtations of
i nperative | anguages and rai sed the | evel of awareness of
functional programm ng in (Backus 1978), a paper which had a
maj or i npact .

Up until this point, there was interest in the idea of
functional |anguages, but efficient inplenmentations were a na-
jor problem This began to change about 1980, when | arger
conput ers capabl e of serious synbolic cal culati on began to be-
cone avail able and affordable. But David Turner al so hel ped
things along with a new idea for nore efficiency (Turner
1979) .

Turner’s idea concerned the way terns are represented in the

conputer. The natural way is to represent themas trees. But

this can invol ve considerable duplication, for exanple in the
reduction of SXYZ to XZ(YZ), the tree representing Z is dupli -
cated. Even nore duplication nay be required in conversions

i nvol ving the fixed-point operator, converting YF to F(YF).

Turner proposed replacing these duplicated parts of the trees
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with pointers to a single location, so that parts of the tree

are not duplicated but stored only once.

This is now the standard nethod of inplenenting functional
| anguages.

Anot her question that arises in the inplenentation of
functional |anguages is the order in which evaluation steps
take place. The Church-Rosser Theorem (see above) tells us
that it nmakes no difference in theory in which order replace-

ments are made in reducing terns, but in practice the order in

whi ch repl acenents are nade can nmake a big difference in effi-
ciency. Furthernore, an order which is efficient in one con-
text may not be efficient in another. For this reason, Landin
proposed an order he called «l azy eval uati on» (Landin 1965),
whi ch has becone one of the standard strategi es of eval uation.

In lazy evaluation, functions are eval uated synbolically be-

fore the values of their argunents are evaluated (unless the

val ues of the argunents are needed for the synbolic eval uation

of the function). |In the pure |anbda-cal culus, |azy eval ua-

tion means always carrying out the replacenent as far left as

possi ble. Thus, lazy evaluation reduces KxU to x i mediately

regardl ess of what happens to U, in fact, U nay not have a

normal form
But | azy evaluation conflicts with strictness. Strictness
nmeans that if any argunent of a function has no val ue, then

the function has no val ue.
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Thus, Kx is not strict in ordinary |anbda cal culus, as the

previ ous exanple shows. Al an Mycroft (1956—present) has in-

troduced (Mycroft 1981) «strictness anal ysis», which enables a

conpil er to conbine these two approaches in an efficient nman-

ner.

A background to this work on efficient evaluation of func-
tional |anguages is the work done on various strategies of

| anbda-reduction. Since the 1960s, work in this area has been
done by Gérard Berry (1948-present), Jean-Jacques Lévy
(1947—present), J. W K op (1945—present), and Jan Bergstra
(1951-present), and related work on reducti on has been done by
J. R Hndley and Gerd Mtschke (1941-present); see
(Barendregt 1984 Part Chapter 3 and I11) and the references

gi ven there.

For a general discussion of nodern inplenentation tech-
ni ques, see (Peyton Jones 1987).

Just as the untyped | anbda-calculus is a paradigmfor a
pure functional |anguage, so typed | anbda-cal cul us or | anbda-
calculus with type assignnment is a paradigmfor the typing
di scipline in programm ng | anguages in general. This neans
that questions arising in connection with types in general can
be treated in terns of type assignment. This matter was first
taken up in conputer science by the functional progranmm ng
conmunity, and, in particular, by Robin MIner (1934—present)
in (Mlner 1978).
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This paper deals with the problemof a programthat is essen-
tially the same over any of several types but which, in the

ol der inperative | anguages nust be rewitten for each separate
type. For exanple, a sort routine nay be witten with essen-
tially the same code except for the types for integers

bool eans, and strings. It is clearly desirable to have a

nmet hod of witing a piece of code that can accept the specific
type as an argunent. M ner devel oped his ideas in terns of
type assignnent to |anbda-terns. It is based on a result due
originally to Curry (Curry 1969) and Hindley (H ndley 1969)

known as the principal type-schene theorem which says that

(assuning that the typing assunptions are sufficiently well-

behaved) every termhas a principal type-schene, which is a

type-schene such that every other type-schenme which can be
proved for the given termis obtained by a substitution of
types for type variables. This use of type schenes allows a
kind of generality over all types, which is known as pol ynor -
phi sm

When type assignnent is considered in connection with
functional |anguages it is often necessary to adopt new prim -
tive types and terms for constructions which can be defined in
terns of ordinary |lanbda-terns. One of these constructions is

the cartesian product type, whose terns are ordered pairs.

Pairs and their projection functions have been represented in
pure | anbda-cal cul us since the 1930s (Curry, Hindley, and

Seldin 1972 § 13A3), but they do not always have the npst de-
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sirable properties with respect to types. |In addition, there

is a property, the surjective property of pairing, which is

desirable in connection with category theory and which says,

in effect, that every termis a pair; fornmally it says that

@st X, snd XOconverts to X, where fst and snd are the |eft

and right projections respectively. In pure |anbda-cal cul us,

no representation of pairs and projections functions satisfies

the surjective pairing property, and (Kl op 1980) showed that

adding pairs and projection functions with the surjective
property causes the Church-Rosser Theoremto fail. Garrel

Potti nger (1944-present) showed (Pottinger 1981) that for

typed terns, surjective-pairing is conpatible with the Church-

Rosser theorem More recently, Klop and Roel C. de Vrijer

(1949-present) have shown (Klop and de Vrijer 1989) that cer-

tain special cases of the surjective property are consistent

wi th the Church-Rosser theoremin the untyped | anbda-cal cul us;

one of the cases is that in which Xis required to be a term

in normal form
Many of the newer functional |anguages are typed.

A nunber of functional |anguages have been introduced
over the years; the nost inportant (and nost easily used) date
from about 1980 or later. (Landin 1964) introduced the SECD
machi ne, and Landin went on to introduce the functional |an-
guage | SWM (Landin 1966). David Turner created three pure
functional |anguages: SASL (Turner 1976), KRC (Turner 1981),
and Mranda (Turner 1985). A variant of LISP called SCHEME
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was introduced by Guy L. Steele, Jr. (1954-present) (Steele
and Sussman 1978). Meanwhile, the | anguage HOPE was intro-
duced by R M Burstall, D. B. MacQueen (1946—present), and D.
T. Sannella (1956—present); see (Burstall, MacQueen, and San-
nel la 1980). Another inportant functional |anguage is M
(MIner 1984), which is the nmeta-language of LCF (an interac-
tive systemfor reasoni ng about conputable functions). M in-
cl udes the basic system of type assignnent to | anbda-terns and
conbi natory terns, and includes an al gorithmfor cal cul ating

t he types.

Ri chard Statman (1946—present) has reversed the usual proce-

dure of calculating the types of terns and cal cul ated the

terns assigned to particular types. This has led to sone in-

teresting results; see (Statnman 1980; Statnman 1981).

A nore recent functional |anguage is HASKELL (named for

Haskel | B. CQurry), which is due to a team headed by Paul Hudak
(1952—present) and Philip Wadl er (1956—present); see (Hudak
and Wadl er 1988).

These | anguages are all intended to be conpiled (or in-
terpreted) on a standard conputer, whose design has nore in
conmon with inperative | anguages than with functional | an-
guages. But sone peopl e have been desi gning hardware to eval -
uate the expressions of functional |anguages directly. These
machi nes have all been conbi nator reducers. Two inportant

projects of this kind are NORVA at Burroughs (Scheevel 1986),



whi ch has since been discontinued, and the CURRY chip at MTRE
Cor poration (Ransdel |l 1986).

Anot her approach to the rel ati on between | anbda- cal cul us
and conputers, which is based on considerations from category
theory, is due to P.-L. Curien (1953—present); see (Curien
1986) .

The connections between | anbda- cal cul us and conputers
have | ed to sone inportant extensions of typed | anbda cal cul us
and type assignment. One inportant such extension is the sec-

ond- order pol ynorphi ¢ typed | anbda-cal cul us, al so known as the

«second- order |anbda-cal culus». It was introduced indepen-
dently by Jean-Yves Grard (1947-—present) (Grard 1971; 1972)
and John C. Reynol ds (1935—present) (Reynolds 1974). Under
the fornul as-as-types notion, it represents a special kind of
second-order logic: propositional logic with a second-order
guantifier over propositions. The strong nornalization theo-
rem hol ds for the second-order |anbda cal cul us.
In the second-order |anbda-calculus, it is often inpor-

tant to indicate the type a variable is assuned to have

Thus, instead of «Ax.M», one wites «Ax : a . M». There are

new abstraction and application operators for types (although

now it is comon to use the same notation as for the old

ones), and the introduction and elimnation rules for the sec-

ond-order quantifier are M: a - Aa.M: (0a)a(provided that

ais atype variable not free in any assunption) and

M: (Oa)a - M3 : [B/a]Ja, where B is any type and [B/a]a is
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the result of substituting B for ain a. As an exanple, from

AX : a. X : a - a (which can be proved w thout assunption),

we can use the introduction rule to deduce Aa . Ax : a . X :

(Oa)(a - a). Then, for any type B, we can use the elinna-

tion rule to deduce (Aa . Ax : a. X)B: B->B Thereis a

second kind of AB-reduction that allows us to reduce (Aa . Ax

a. x)Bto A : B. x

Anot her interesting extension of ordinary type assi gnnent

is due to Mari o Coppo and Mari angi ol a Dezani - G ancagl i ni, and

i nvol ves a new type constructor, the intersection of two types

(Coppo and Dezani -G ancaglini 1978). In this system both the
normal i zati on theorem (every termwith a type has a norna
form and its converse (every termin normal formhas a type)
hol d. However, intersection types do not correspond to con-
junctions under the formul as-as-types notion (H ndley 1984).
In further work with Patrick Sallé (dates?) and Betty Venneri,
they showed that if this systemis further extended by a uni-

versal type which is a type of every term then the nature of

the types (and in particular how the universal type occurs in
them) can be used to characterize terns that have a norma
formand terns that have a «head normal form», where a head
normal formis a termthat cannot be reduced by applying a re-
duction rule at the head of the term (Coppo and Dezani -

G ancaglini and Venneri 1981; Sallé 1980). The conpl et eness
theoremis given in (Hndley 1982). |. Margaria (1948—pre-
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sent) has al so done work on these types. For nore sources see
(H ndl ey and Seldin 1986 p. 223).

The intersection types obey the following rules: M: a, M: B

F M: anBand M: anf - M: aand anB - M: B. The rea-

son that the fornulas-as-types notion fails is that the term

does not change in these rules, and so these terns cannot cod-

i fy proofs involving conjunction.

Anot her extension of ordinary type assignment invol ves

replacing the arrow type with the dependent function type.

This type has the property that the type of the value of a
functi on depends on the argunent as well as on the type of the
argunent .
The dependent function type is often witten (Ox : A)B.

Using the syntax of the second-order |anbda-cal culus to indi-

cate the types of the bound variables, its introduction and

elimnation rules arel’, x: A M: BO T |

(Ox : A (A : A. B), provided that x does not occur free in

N and M: (Ox : AB N: AR MN\: [Nx]B. The arrow type

A - B can be defined as (Ox : A)B for a variable x which does

not occur free in B.

Curry had the idea for this type in 1956, and the idea is
nmentioned in (Curry, H ndley, and Seldin 1972 pp. 343,
353ff.), where it is called generalized functionality, but the

first real work on Curry’s version of this idea was done by
Jonathan P. Seldin in (Seldin 1979). But by then the depen-

dent function type had al ready been used in the AUTOVATH pr o-
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ject (de Bruijn 1970; de Bruijn 1980), which was a systemin
whi ch proofs could be verified by witing themin the |an-
guage; using the formul as-as-types idea, if the coded version
of the proof was grammatically correct, then the proof was
valid. (Qher people who have worked on the AUTQVATH proj ect
are Roel C. de Vrijer, L. S. van Benthem Jutting (1927—pre-
sent), R P. Nederpelt (1942—present), D ederik T. van Daal en
(1949-—present), |. Zandl even (dates?), and J. Zucker
(1942—present); see (de Bruijn 1980) for references). The de-
pendent function type is also inmportant in the type theory of
Per Martin-Lof (1942-present) in his intuitionistic theory of
types, which is a predicative intuitionistic type theory
(Martin-Lof 1975; 1984). The type theory has, in turn, been
used as the basis of the Nuprl proof devel opnent system (using
the fornul as-as-types idea) by Robert L. Constable
(1942—present) and his associates at Cornell (Constable et al.
1986) .

A proof devel opnent systemdiffers froman autonmatic theorem

prover in that in it the user selects the result to be proved
and the basic strategy for carrying out the proof on an inter-
active basis, and the conputer does the work of carrying out
the strategy. At each stage the user selects the next tactic
to be applied, where a tactic is, in a sense, a derived rule
run backwards.

Because the type theory of Martin-L6f is predicative and the

second-order |anbda-calculus is not, it is not possible to in-
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terpret the latter in the forner. An inpredicative system
simlar to Martin-Lof’s type theory in which the second-order

| anbda- cal culus can be interpreted is the cal culus of con-

structions of Thierry Coquand (1961—present) (Coquand and Huet
1988), for which the strong nornmalization theorem has been
proved and whi ch has been proposed as the basis of a proof de-
vel opment systemsimlar to Nuprl. Coquand and Gérard Huet
(1947—present) are continuing work on the cal cul us of con-
structions at INR A

Al t hough the | anbda-cal culus did not |ead to the kind of
foundation for |ogic and mathematics for which its founders
were searching, it has shown itself to be extrenely useful in

several areas of |ogic and conputer science.
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