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ABSTRACT

Generalized linear modelling (GLM) is a statistical technique used to model the relation between a response variable and a
set of explanatory variables. GLM is similar to the well known multiple regression. However, GLM is a powerful technique
for exploratory data analysis with many advantages over more traditional techniques. For example, GLM allows the
incorporation of categorical as well as continuous response and explanatory variables in the analysis. In this paper, GLM is
explained and two examples of the application of the technique in geomorphology are given. The first example involves
glacier surging and the second involves landslide susceptibiliy. The examples demonstrate the relevance of GLM to many
common problems in geomorphology.  1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Understanding of physical processes in a geomorphological system can be aided by modelling the relations and
interactions between the different components or variables in that system. Statistical black box approaches,
such as multiple regression, provide predictive tools which can aid our understanding of physical relations.
However, there are several limitations to the applicability of traditional linear models to geographical systems.
One of the most important is that linear models which are based on ordinary least squares (OLS) regression are
applicable to continuous response variables only. Certain geomorphological variables, such as type of lithology
and type of morphology, cannot be quantified on a continuous scale. These variables are usually defined as
categories, with either nominal or ordinal scales.

Generalized linear modelling (GLM) (Aitkin et al., 1989; Collett, 1991) is similar to (multiple) linear
regression. However, in linear regression the observed response variable and the values predicted by the linear
model are linked linearly (they are the same). In GLM a link function is defined which allows the predicted
values to be transformed to (or mapped onto) a variety of distributions including a binary response. Therefore,
GLM allows the modelling of many different types of response variable with many different distributions. In
simple terms, the variables involved (both response and explanatory) may be either continuous or categorical
(ordinal or nominal), or any combination of both types.

As the name suggests, GLM is designed to model linear relations between a response variable and a set of
explanatory variables: the underlying statistical model is linear and additive. Therefore, as for linear regression,
transformation of the data prior to modelling may be necessary to fit non-linear relations. Other methods of
distinguishing (dichotomous) groups are eigenvalue techniques such as principal component analysis,
discriminant analysis, cluster analysis, factor analysis and correspondence analysis (Davis, 1986), but these
techniques lack the predictive power of GLM. Useful introductions to GLM are given in Dobson (1990) and
Collett (1991).

GLM has been applied in biostatistics since the 1940s, and more recently in medical statistics, econometry,
medical geography and population geography. However, the technique has received relatively little use in
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squared distribution, the reduction in model deviance can be used as an indicator of the significance of each
term added to the model (Baker and Nelder, 1978).

When terms are added to the model in a step-wise fashion, the significance of each term is checked at each
step by finding the probability for a given reduction in model deviance and number of degrees of freedom. Only
those terms which are significant at a given confidence level (for example, 95 per cent) are retained. Once a term
has been found to be significant, the estimated coefficient (or coefficients in the case of categorical terms) must
be tested for significance using Student’s t-value (estimated coefficient/standard error). At the 95 per cent
significance level a coefficient is significant when it is greater than approximately twice the standard error.

A potential problem exists for categorical variables which comprise several binary terms because some
terms may be significant while others are not. It is common practice to aggregate such categorical variables into
fewer, coarser classes to reduce the problem and also to simplify the resulting GLM. However, care should be
taken as it is possible to lose vital information in this aggregating process.

It is common to test the significance of interaction terms as new main terms are added to the model (see
Healy, 1988). For example, when a second main term is added to the model, the interaction between the two
main terms (equal to the product of the two main terms) should be checked. When a third main term is added, the
interaction between the three combinations of two main terms and the interaction between the three main terms
should be checked. Clearly, the number of interaction terms increases exponentially with the number of main
terms, and interaction terms between three or more variables can be difficult to interpret. For these reasons,
interaction terms are usually limited to those between pairs of explanatory variables. For categorical variables
which may be divided into several binary terms, the number of interaction terms may become large. Once again,
the solution is to aggregate into fewer, coarser classes.

Model interpretation

The primary goal of GLM is prediction. However, in geomorphology, the cause and effect relation between
response and explanatory variables is often unclear. Further, there are often many errors and much uncertainty
in geomorphological primary (field) and secondary data, and outliers in the data are common. Therefore, while
prediction remains the ultimate goal of GLM, one of the most important uses of GLM in geomorphology is as a
means to quantify and explore the relations between response and explanatory variables with the eventual goal
of understanding the underlying geomorphological processes.

In a linear model involving OLS regression, the coefficients of the regression model are interpreted on their
sign and magnitude. A positive coefficient means that there is a direct relation between the response variable
and the explanatory variable, and (for standardized variables) the magnitude of the model coefficient
determines the strength of correlation. For linear regression this means that a unit increase in the explanatory
variable results in a coefficient-times-unit increase in the response variable.

For GLM the interpretation is not as direct, but is also based on the sign and magnitude of the coefficient
(Liao, 1994). For continuous variables, the coefficients are interpreted as in OLS regression except that the
correlation is not linearly related to the magnitude of the coefficient. For GLM with the logit link the correlation
is usually expressed as an odds ratio (Liao, 1994). For categorical variables, a positive coefficient implies an
above-average correlation and a negative coefficient implies a below-average correlation. Interpretation of
interaction terms is less straightforward, particularly if the interaction term is a mixture of data types (see
Collett, 1991).

Accuracy assessment

While the physical interpretation of individual model coefficients is straightforward, the performance of the
GLM can be difficult to assess. Residual analysis using a reliable set of test data is the best way to validate the
GLM. Comparisons between the predictions and the validation data usually take the form of index plots and
half-normal plots of the residuals (Collett, 1991, p. 131). These plots can lead to the identification of outliers and
their possible removal from the model if a valid argument exists.

 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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The GLIM software

The GLIM (Generalized Linear Interactive Modelling) system software was used for GLM in both examples
in this paper. GLIM was developed by the Royal Statistical Society and is a UNIX- and PC-based interactive
statistical modelling software package. It has a concise command language with a specific syntax allowing the
user to fit models interactively. Specific examples of applications of GLIM are given in Baker and Nelder
(1978), Healy (1988) and Aitkin et al. (1989).

GLIM allows a range of link functions between the response and explanatory variables (for example,
exponent, logit, probit, logarithm, reciprocal and square root) and provides several possibilities for testing
significance. Further, GLIM allows the user to assume error distributions other than Gaussian, such as
binominal, gamma and Poisson. A range of mathematical functions for transforming and manipulating
variables is provided.

The modelling procedure in GLIM is standard for all models. The data are entered, the data types and the
response variable are defined and the type of model is specified. Then the model can be fitted interactively. The
model output is given as (i) estimated coefficient, (ii) standard error of the estimate, (iii) model deviance and
(iv) degrees of freedom. The estimated probabilities and residuals can be calculated for each model and
displayed graphically.

EXAMPLES IN GEOMORPHOLOGY

In this section, two applications of GLM in geomorphological research are presented. First, GLM is used to
model the relation between glacier surging and a set of glacier variables, and second, GLM is used to predict
susceptibiliy to landsliding.

Case 1: Glacier surging

Glacier surging is a cyclic flow instability in which slow flow of the glacier during a long period of
quiescence is followed by extremely fast flow during a relatively short surge phase. The spatial distribution of
glaciers that exhibit this phenomenon is non-uniform on both a global and a regional scale (Clarke et al., 1986).
In most areas there are no surge-type glaciers, but in other areas clusters of surge-type glaciers exist. Despite
extensive observations on several surge-type glaciers, understanding of the mechanism(s) and trigger(s) that
control this flow instability is incomplete.

The aim of this case study is to analyse a population of surge-type and non-surge-type glaciers to model the
relation between surging and several glacier variables. Several theoretical treatments of glacier surging suggest
that particular variables must cross critical thresholds for surging to occur. Examples of these variables are
glacier length (e.g. Weertman, 1969; Kamb, 1987), glacier slope (e.g. Budd, 1975; Kamb, 1987), glacier
thickness (e.g. Fowler and Johnson, 1995), and ‘Fowler’s index’ – the product of glacier width squared and bed
slope (Fowler, 1989, equation 4.8). Thus, it should be possible to use criteria such as the glacier geometry to
distinguish surge-type glaciers from normal glaciers. Determining the variables that control surging should
provide vital clues to the surge mechanism and trigger, and provide a test of present surge theories.

Previous studies have indicated that no single variable is able to explain the geographical distribution of
surge-type glaciers adequately (Glazyrin, 1978; Clarke et al., 1986; Wilbur, 1988; Hamilton and Dowdeswell,
1996). Moreover, bivariate analyses are difficult to interpret because of statistical interdependence between the
explanatory variables. For example, glacier length and width have a strong positive correlation, and glacier
length and slope a strong negative correlation (Clarke, 1991; Jiskoot et al., 1998). Therefore, long glaciers tend
to be large, and are thus wide and have low slopes. It is necessary to disentangle these multiple correlations via a
fully multivariate analysis. Prior to the application of GLM to the present problem, traditional multivariate
analysis was applied to model glacier surging in the St Elias Mountains, Yukon Territory, Canada (Clarke,
1991).

 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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Table I. Significant multivariate logit models for glacier surging with the model deviance (D), degrees of freedom (DF), estimated
coefficients (E) and standard errors (SE). The optimal multivariate logit model for glacier surging is shown in italics

Variable* Subgroup E SE D DF

– ‘Null model’ –3·179 0·1228 579·49 1725

L+W base
log-L
log-W

–8·148
7·027

–2·338

0·7302
0·7131
0·8924

306·84 1723

L+w base
log-L

w

–7·128
7·045

–0·00998

0·4852
0·6284

0·00232

293·83 1723

L+H base
log-L

H

–9·487
5·739

0·00116

0·9342
0·5271

0·00032

300·69 1723

L+M base
log-L

M

–11·16
7·820

0·00215

1·072
0·7195

0·00042

284·68 1723

L+L.w+M base
log-L

log-L.w
M

–12·08
9·649

–0·0071
0·0021

1·161
0·9141
0·0014
0·0004

262·75 1722

* L=glacier length, W=mean glacier width, w=Fowler’s index, L.w=the interaction term between glacier length and Fowler’s
index, H=maximum altitude, M=minimum altitude

Data

Data for the analysis were selected from the Yukon Glacier Inventory, which is a component of the Canadian
Glacier Inventory (Ommanney et al., 1973). The Yukon Glacier Inventory includes a surge index related to
observed surges and morphological evidence of surging. Each glacier is assigned a code from 0 (no surge
features) to 5 (definite surge evidence). Based on the surge probability schemes published in Clarke et al. (1986)
the glaciers were divided into non-surge-type (digits 0–3) and surge-type (digits 4 and 5).

To compare the performance of GLM to Clarke’s (1991) multivariate analysis we used a similar set of
glaciers and variables, but added the categorical variable ‘type of glacier front’ to illustrate the power of GLM.
Following Clarke (1991) we excluded all rock glaciers, remnants and non-real glacier features as well as all
tributary glaciers from the 4675 entries in the Yukon Glacier Inventory, leaving 1726 glaciers for the GLM
analysis. From these glaciers, 69 (4 per cent) glaciers were classified as surge-type. Since an object-based
approach was adopted it was possible to represent the entire glacier population in the test data.

Analysis

The GLM analysis was performed using a logit link and binomial error distribution. The response variable in
the logit model is a dichotomous surge index, S, with S=1 for surge-type glaciers and S=0 for non-surge-type
glaciers. The logit model was fitted for a set of continuous variables, that is, glacier length, mean glacier width,
surface slope, minimum and maximum glacier altitude and ‘Fowler’s index’ (Fowler, 1989), and the categorical
variable, type of glacier front. The variables glacier length, width and surface slope were log-normally
distributed and the logarithmically transformed variables sometimes resulted in a better linear fit. Therefore, the
log-transformed data were used as separate variables in the model.

The null model (model without variables fitted) has a model deviance of 579·49 for 1725 degrees of freedom
and the estimate is significantly negative (Table I). The log-transformed glacier length produced the greatest
reduction in deviance of the bivariate models. Therefore, the other variables were added to this model in a step-
wise fashion to determine which second explanatory variable led to the greatest further decrease in deviance.
Each additional variable in the model was accompanied by a test of the interaction terms of the variables. All
variables were tested, but only significant variables are shown in Table I. 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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Figure 1. Comparison between the optimal multivariate logit model of glacier surging and observations of surge-type glaciers. Bar chart
shows the fraction of observed surge-type (hatched) and non-surge-type (white) glaciers in each of five output classes. These output
classes represent the predicted probabilities that the glacier is of surge-type from 0·0 (normal) to 1·0 (surge-type). The values above the

bars give the percentage of total number of glaciers covered by each class

The variable that caused the greatest reduction in model deviance in combination with log-length was the
minimum altitude. Thus, long glaciers with their margins at high altitudes are likely to be of surge-type. It is
notable that when glacier width is fitted in the bivariate model its coefficient is positive, whereas in combination
with log-length, the sign is negative (Table I). This indicates that long glaciers with relatively narrow width are
more likely to surge.

Adding Fowler’s index to the bivariate model involving log-length also caused a large reduction in model
deviance. In this model, the coefficient for log-transformed length is positive, whereas the coefficient for
Fowler’s index is negative, but still significant as the standard error is less than half the value of the estimated
coefficient. When fitting Fowler’s index in a bivariate model the null model was not improved significantly,
whereas when fitted in combination with glacier length, there is a significant correlation between glacier
surging and Fowler’s index. This may be explained by the interaction term between glacier length and Fowler’s
index: the interaction term appeared more significant than the relation between glacier surging and Fowler’s
index. As it is in most cases easier to interpret the model with only the interaction term (Healy, 1988), we
retained this interaction term rather than Fowler’s index in the final model.

The optimal logit model, with a reduction in model deviance of 316·6 for a loss of three degrees of freedom,
indicated that the greatest correlation between glacier surging and the set of glacier variables tested consists of
three variables: glacier length, the interaction term between Fowler’s index and glacier length, and minimum
altitude (Table I). The model coefficients for length and altitude are positive, and that for the interaction term is
negative. A long, high altitude glacier is most likely to be of surge-type. The presence of the interaction term in
the final model suggests that the influence of Fowler’s index on glacier surging varies with length, and suggests
that Fowler’s index is more important for long glaciers.

Model validation

To assess the model, probabilities were estimated for each individual glacier in the test data and the residuals
examined. If the model was perfect the predicted probability of the response variable would be 1 for every
surge-type glacier and 0 for every non-surge-type glacier. However, the probabilities are continuous, ranging
from 0 to 1, so that exact correspondence is not possible. Outliers may indicate unusual cases which are not
covered by the set of explanatory variables used in the model, or these outliers may be misclassified units, such
as a surge-type glacier incorrectly classified as a normal glacier. Figure 1 shows graphically the relation

 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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between the observed surge index (surge-type or non-surge-type) and the probabilities of surging predicted by
the logistic model.

Clarke (1991) considered four geometric glacier variables in his multiple regression analysis: glacier length,
glacier width, glacier slope and Fowler’s index. Using traditional multiple regression, glacier surging was
explained by glacier length only; the remaining variables had no additional influence (Clarke, 1991). Using a
logit model we demonstrated that Fowler’s index does influence glacier surging, but the influence varies with
glacier length. Fowler’s index was predicted by Fowler (1989) to be smaller than a certain critical value for
surge-type glaciers. Our model agrees with this prediction, as surging and Fowler’s index are negatively
correlated.

Case 2: Landslide susceptibility

Information on the spatial distribution of the probability of landsliding in the future (the landslide hazard)
would provide a useful aid for a variety of planning and civil engineering applications. However, a landslide
hazard map should include an indication of the time scale within which a particular landslide is likely to occur.
In practice, data on the temporal dimension of the landslide hazard are difficult to obtain, since landslide
triggering is usually due to external (extrinsic) causes (for example, rainfall or earthquakes). For this reason,
landslide hazard maps are usually replaced by landslide susceptibility maps (Carrara et al., 1996). Landslide
susceptibility maps may be obtained directly in the field, but are more commonly obtained indirectly based on
measurements of several (intrinsic) properties (such as type of geology and slope angle) which affect slope
stability.

In Italy, landslides are often forested to consolidate the soil. This implies a direct correlation between
susceptibility to landsliding and forestation. However, the relation between susceptibility to landsliding and
forestation is actually likely to be inverse. Therefore, when producing a GLM it is important to identify
conditions prior to landsliding. When the model constructed between landsliding and prior conditions is then
applied to present conditions, the tendency is to map susceptibility to landsliding in the future.

Previously, researchers have taken many different approaches to mapping susceptibility to landsliding
including heuristic and statistical approaches (Hansen, 1984; Carrara et al., 1996). In the statistical approach, a
statistical model of the relation between susceptibility to landsliding (the response variable) and a set of
explanatory variables is constructed based on sample data. This model is then applied to map susceptibility to
landsliding. Simple statistical techniques have been used widely (Gupta and Joshi, 1989; Siddle et al., 1991;
Maharaj, 1993), but relatively few researchers have used fully multivariate statistical approaches (Neuland,
1976; Carrara et al., 1991, 1996; Bernknopf et al., 1988; Wang and Unwin, 1992; Jäger and Wieczorek, 1994).

In this example, a geographic information system (GIS) was used in combination with GLM to model the
relation between landsliding and several explanatory variables, chosen and defined to reflect conditions prior to
landsliding. Two models were created: one for all landslides, and one for active landslides only. Further models
are developed by Atkinson and Massari (1998).

Data

A study area was chosen in the Umbro–Marchean Appennines in central Italy because the area was known to
contain many landslides and a large amount of variation in the explanatory variables. The site lies between
latitudes 43°30′ and 43°35′N and longitudes 12°27′ and 12°32′E and covers an area of 65km2. The outcropping
geological formations range in origin from the Jurassic–Cretaceous limestones and limestones with marls in the
northeast to the Miocene flysch formations in the southwest.

Previous slope movements were mapped using air photo interpretation and field checking. A digitized map
of landslide boundaries was input to the GIS and a vector-to-raster conversion undertaken to provide a raster
image of slope movement with a spatial resolution of 20m by 20m. Slope movements were then classified by
type following Varnes’ (1978) and Wieczorek’s (1984) classification systems. For the present analysis slope
movements were separated into dormant and active landslides. Within each slope, movement feature, body
rupture and deposit areas were identified since only the features of the rupture area were deemed relevant to
mapping susceptibility to landsliding.

 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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Table II. (a) Independent variables included in both models of landslide
susceptibility. (b) Additional independent variables included in the model
of active landslides only

Index Variable Code

(a)
1 Geology

Lithology (RGEOL(1,2)(3,4,5,6)(7))
Limestones (RGEOL(3,4,5,6))
Marls (RGEOL(1,2))

RGEOL
Litho
Lim
Marl

2
3
4
5
6
7
8
9

Dip
Strike
Strata–slope
Aspect
Lineament density
Lineament density squared
Slope angle
Slope angle squared

DIP
STR
ATT
RASP
L5
L5Q
LSP
LSQ

(b)
1
2
3
4
5
6
7
8
9

Vegetation cover
Soil thickness (categorical)
Soil thickness (continuous)
Horizontal curvature
Vertical curvature
Concavity of slope
Local relief
Roughness
Roughness squared

RVEG
SOIL
SSOIL
HC
VC
CXV
REL
R5
R5Q

Several different explanatory variables were selected and mapped (see Table II a and b). Elevation data were
digitized from a topographic map at scale 1:10000 and data layers were obtained on slope aspect, slope angle,
slope curvature (three measures of slope curvature were defined), local relief and surface roughness. Slope
angle was determined separately for each landslide unit to provide slope conditions prior to failure. A 1:50000
scale geological map of the area (published by the Servizio Geologico Italiano) was digitized to obtain data
layers on the geological formations: the dip (inclination) and strike (orientation) of the strata, and a strata–slope
relation. By means of air photo interpretation and further digitizing, data layers were also obtained on the
density of lineaments (within areas of 1km2) and on vegetation cover. Finally, categorical and continuous
explanatory variables were produced representing soil thickness (Table IIb). The full definitions of the
complete set of categorical variables used are given in Atkinson and Massari (1998).

To ensure that no preference was given to large or small landslides, each landslide unit received equal
weighting. This allocation was achieved by extracting a single pixel from the centre of each of the 442 landslide
rupture areas to give a set of 442 locations where landslides were present. Since the training data were obtained
from single pixels, the limit of each landslide was not considered and thus one of the main errors in landslide
survey, the exact location of the border line, was circumvented (Carrara et al., 1992; van Westen, 1993). To
balance the number of pixels for which landslides were present against the number for which landslides were
absent it was necessary to obtain 1458 pixel locations from the remaining non-landslide area. These pixel
locations were obtained using a random sampling scheme. For each of the total of 1900 pixel locations, values
were obtained for the presence or absence of landsliding, and for each explanatory variable.

Analysis

An initial GLM was constructed in a step-wise fashion for all landslides based on the intrinsic properties
defined in Table IIa. The significant (at the 95 per cent confidence level) explanatory variables are given in
Table III in the order of their inclusion in the model. Clearly, geology and slope angle are highly significant.
Further, the interaction term between geology and slope angle is significant, indicating that the dependence of
susceptibility to landsliding on slope varies with geology (Table III). The density of lineaments is not
significant because this term is highly correlated with geology and is, therefore, largely redundant. The category

 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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Table III. Independent variables (given in order
of significance) included in the two models of
landslide susceptibility. Variables are
significant at the 95 per cent confidence level

Model All landslides Active landslides

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

RGEOL
LSP
LSQ
STR
RASP
RGEOL.LSQ
RGEOL.LSP
RASP.LSP
STR.RASP
RASP.LIM

RVEG
CXV
RGEOL
LSP
VC
SSOIL
HC
STR
REL
VC.REL
CXV.SSOIL
LSQ
RGEOL.HC
LSP.SSOIL
RASP
LSP.VC
LSQ.VC

Figure 2. Comparison between the second model of active landslides (this model includes the variables in Table IIb) and observed
landslides. Bar chart shows the fraction of area with observed landslides (hatched) and without landslides (white) in each of the five output
classes. These output classes represent the predicted landslide susceptibilities for this model with a range from 0·0 (not susceptible to
landsliding) to 1·0 (definitely susceptible to landsliding). The values above the bars give the percentage of total region covered by each

class

within strike most related to landsliding is the one in the direction of the tectonic movement (northeast to east).
In this orientation, the strata are most likely to be broken up by tectonic movement and are characterized by a
greater dip and frequent overturning.

A second model for ‘active’ landslides only was produced, in which several additional explanatory variables
applicable to active landslides only were included (Table IIb). The significant terms in this active landslide
model are given in Table III. Now, vegetation cover and concavity (or convexity) of slope are highly significant,
and more so than geology and slope angle. This significance is not surprising when one considers that active
landslides are largely surface features. The relative significance of vegetation cover is interesting. In the study
region, agricultural practices are related to the slope angle and soil type and, therefore, indirectly represent
geology. However, we expect that vegetation cover also directly influences susceptibility to landsliding through
various factors including (i) protection of the surface, (ii) consolidation of the soil and (iii) agriculture resulting

 1998 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 23, 1185–1195 (1998)
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in bare soil for long periods. This expectation is reasonable because we have modelled the vegetation conditions
prior to landsliding.

Model validation

To map susceptibility to landsliding the GLM (constructed using conditions prior to landsliding) should be
applied to present conditions. However, to validate this GLM, the model should be applied to conditions prior to
landsliding and the estimates compared to the present landslide distribution.

To save space, the accuracy assessment of only the second (active) landslide model is presented in Figure 2.
While there is not a direct one-to-one correlation between predicted susceptibility and the presence or absence
of active landslides, the general pattern is the desired one (that is, more active landslides occur in areas of higher
predicted susceptibility). Further, since not all susceptible areas will result in landsliding, the correlation should
not be exact.

CONCLUSIONS

GLM is a powerful quantitative technique which is finding increasing application in geomorphology. It
provides the ability to model many different types of response variable including the binary response relevant to
both of the examples presented above. Further, the results from a well designed GLM can elucidate the effects
on a specific response variable of a set of complex interacting explanatory variables.

GLM is an exploratory technique in that the models are developed interactively, and this provides the
experienced user with a real ‘feel’ for the data. While the many textbooks available on GLM cover the theory in
substantial detail, and an understanding of this theory is necessary to obtain meaningful results, GLM is an
important tool which could be useful in many areas of geomorphology.
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