Some arithmetic groups that cannot act on the line

Dave Witte Morris
University of Lethbridge, Alberta, Canada
http://people.uleth.ca/~dave.morris
Dave.Morris@uleth.ca

joint with
Lucy Lifschitz, University of Oklahoma
Vladimir Chernousov, University of Alberta

Example

Example: SL(2, Z) does not act on \(\mathbb{R} \) because it has elements of finite order.

Fact

There exist other examples that act on \(\mathbb{R} \).
But all are "small". (I think all known are in SO(1, n)).

Conjecture

Large arithmetic groups (R-rank > 1) cannot act on \(\mathbb{R} \).

Bounded generation by unip subgrps

Note: Invertible matrix \(\sim \) Id by row operations.

Key fact: \(g \in \text{SL}(2, \mathbb{Z}) \sim \) Id by integer (Z) row ops.

Example

\[
\begin{array}{ccc}
13 & 31 \\
5 & 12 \\
\end{array}
\sim
\begin{array}{ccc}
1 & 2 \\
0 & 1 \\
\end{array}
\]

But # steps is not bounded: \(\mathcal{U} \) and \(\mathcal{V} \) do not boundedly generate \(\text{SL}(2, \mathbb{Z}) \).

Transformation groups

Given: group \(\Gamma \), (connected) manifold \(M \).

\(\exists \) What are the actions of \(\Gamma \) on \(M \)?

\(\text{I.e.: } \exists \text{ what are homos } \phi : \Gamma \to \text{Homeo}_+(M) \)?

Question

\(\exists \text{ faithful action?} \)

Simplest case

\[\dim M = 1, \quad \text{so } M = S^1 \text{ or } \mathbb{R}. \]

Assume \(M = \mathbb{R} \).

Example

\(\mathbb{Z} \) acts on \(\mathbb{R} \).

\[(T_n(x) = x + n) \implies T_{m+n} = T_m \circ T_n \]

Question

\(\exists \text{ (faithful) action of } \Gamma \) on \(\mathbb{R} \)?

Conjecture

\(\Gamma \) does not act on \(\mathbb{R} \).

Theorem (Carter-Keller-Paige, Lifschitz-Morris)

\(\Gamma \) no action on \(\mathbb{R} \) if \(\Gamma \cong \text{SL}(3, \mathbb{Z}) \) or \(\text{SL}(2, \mathbb{Z}[[\alpha]]) \)

Proof combines bdd generation and bdd orbits.

Unipotent subgroups: \(\mathcal{U} = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}, \quad \mathcal{V} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).

Theorem (Liehl)

\(\text{SL}(2, \mathbb{Z}[1/p]) \) bddly gen’d by elem mats.\n
\(\text{I.e., } T \sim \text{Id by } \mathbb{Z}[1/p] \) col ops, # steps is bdd.

Easy proof

Assume Artin’s Conjecture:

\(\forall r \neq \pm 1, \) perfect square,

\(\exists \) \(q \), s.t. \(r \) is primitive root modulo \(q \):

\(\{ r, r^2, r^3, \ldots \} \mod q = \{ 1, 2, 3, \ldots, q - 1 \} \)

Assume \(\exists q \) in every arith progression \(\{ a + kb \} \).

\(\exists q = a + kb, \) \(p \) is a primitive root modulo \(q \).
Theorem (Lifschitz-Morris)

\(\Gamma = \text{SL}(2, \mathbb{Z}[1/p]) \) acts on \(\mathbb{R} \) \(\Rightarrow \) every \(U \)-orbit bdd.

\[U = \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \varphi = \begin{bmatrix} p & 0 \\ 0 & 1/p \end{bmatrix} \]

Assume \(U \)-orbit and \(V \)-orbit of \(x \) not bdd above. Assume \(\varphi \) fixes \(x \). (\(\varphi \) does have fixed pts, so not an issue.)

- Wolog \(\varpi(x) < \psi(x) \).
- Then \(\varphi^n(\varpi(x)) < \varphi^n(\psi(x)) \).
- LHS = \(\varphi^n(\varpi(x)) = (\varphi^n \varphi \varphi^{-n})(x) \approx x \approx \infty \).
- RHS = \(\varphi^n(\psi(x)) = (\varphi^n \varphi \varphi^{-n})(x) \approx \psi(x) < \infty \).

Corollary

\(\Gamma \) cannot act on \(\mathbb{R} \).

Proof.

Suppose there is a nontrivial action.

It has fixed points:

Remove them:

Take a connected component:

\(\Gamma \) acts on open interval (\(= \mathbb{R} \)) with no fixed point.

Bounded orbits

\(\text{SL}(2, \mathbb{Z}[1/p]) \) bddly gen’d by elem mats. Le., \(T \sim \text{Id by } \mathbb{Z}[1/p] \) col ops, \# steps is bdd.

Theorem (Liehl)

\(\text{SL}(2, \mathbb{Z}[1/p]) \) bddly gen’d by elem mats.

Le., \(T \sim \text{Id by } \mathbb{Z}[1/p] \) col ops, \# steps is bdd.

Proof.

\[\begin{bmatrix} a & b \\ c & d \end{bmatrix} q = a + kb \text{ prime, } p \text{ is prim root} \]

\[\begin{bmatrix} q & b \\ * & * \end{bmatrix} p^{e} \equiv b \pmod{q}; \quad p^{e} = b + k'q \]

\[\begin{bmatrix} q & p^{e} \\ * & * \end{bmatrix} p^{e} \text{ unit: can add anything to } q \]

\[\begin{bmatrix} 1 & p^{e} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]

Corollary

\(U \)-orbits and \(V \)-orbits are bounded.

Proof.

- \(Bdd \) generation: \(U \cap V \cap \cdots \cap V \).
- \(Bdd \) orbits: \(U \)-orbits and \(V \)-orbits are bounded.