What is a superrigid subgroup?

Dave Witte

Department of Mathematics
Oklahoma State University
Stillwater, OK 74078
USA

dwitte@math.okstate.edu
http://www.math.okstate.edu/~dwitte

Abstract

It is not difficult to see that every group homomorphism from \mathbb{Z}^k to \mathbb{R}^n extends to a homomorphism from \mathbb{R}^k to \mathbb{R}^n. (Essentially, this is the fact that a linear transformation can be defined to have any desired action on a basis.) We will see other examples of discrete subgroups Γ of connected groups G, such that the homomorphisms defined on Γ can ("almost") be extended to homomorphisms defined on all of G.
Eg. Group homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{R}^d$
(i.e., $\phi(m + n) = \phi(m) + \phi(n)$)

$\Rightarrow \phi$ extends to homo $\hat{\phi}: \mathbb{R} \rightarrow \mathbb{R}^d$.

Namely, define $\hat{\phi}(x) = x \cdot \phi(1)$.

Check:
- $\hat{\phi}(x + y) = \hat{\phi}(x) + \hat{\phi}(y)$
- $\hat{\phi}(n) = \phi(n)$
- $\hat{\phi}$ is continuous

(only allow continuous homos)

Eg. Group homomorphism $\phi: \mathbb{Z}^k \rightarrow \mathbb{R}^d$

$\Rightarrow \phi$ extends to homo $\hat{\phi}: \mathbb{R}^k \rightarrow \mathbb{R}^d$.

Proof. Standard basis $\{e_1, \ldots, e_k\}$ of \mathbb{R}^k.
Define $\hat{\phi}(x_1, \ldots, x_k) = \sum x_i \phi(e_i)$.

(“linear trans can do anything to a basis”)

Linear transformation \Rightarrow homo of additive groups
Group Representation Theory:
study homos into Matrix Groups.

\[\text{GL}_d(\mathbb{C}) = d \times d \text{ matrices over } \mathbb{C} \]
with nonzero determinant

This is a group under multiplication.

\[\mathbb{R}^d \cong \begin{pmatrix}
1 & 0 & 0 & \mathbb{R} \\
0 & 1 & 0 & \mathbb{R} \\
0 & 0 & 1 & \mathbb{R} \\
0 & 0 & 0 & 1
\end{pmatrix} \]

So any homomorphism into \(\mathbb{R}^d \)
can be thought of as a homo into \(\text{GL}_{d+1}(\mathbb{C}) \).
Group homo $\phi: \mathbb{Z} \rightarrow \text{GL}_d(\mathbb{R})$

(i.e., $\phi(m + n) = \phi(m) \cdot \phi(n)$)

$\not\Rightarrow$ extends to homo $\hat{\phi}: \mathbb{R} \rightarrow \text{GL}_d(\mathbb{R})$.

(Only allow continuous homos.)

Pf by contradiction. Supse \exists homo $\hat{\phi}: \mathbb{R} \rightarrow \text{GL}_d(\mathbb{R})$

with $\hat{\phi}(n) = \phi(n)$ for all $n \in \mathbb{Z}$.

$\hat{\phi}(0) = I \Rightarrow \det(\hat{\phi}(0)) = 1 > 0$

\mathbb{R} connected

$\Rightarrow \hat{\phi}(\mathbb{R})$ connected

$\Rightarrow \det(\hat{\phi}(\mathbb{R}))$ connected

$\Rightarrow \det(\hat{\phi}(\mathbb{R})) > 0$

$\Rightarrow \det(\phi(1)) > 0$

Maybe $\det(\phi(1)) < 0.$

(Any $A \in \text{GL}_d(\mathbb{R})$, let $\phi(n) = A^n.$)
Group homo $\phi: \mathbb{Z} \to \text{GL}_d(\mathbb{R})$

$\not\Rightarrow$ extends to homo $\hat{\phi}: \mathbb{R} \to \text{GL}_d(\mathbb{R})$.

Because: maybe $\det(\phi(1)) < 0$.

$$\det(\phi(2)) = \det(\phi(1 + 1)) = \left(\det(\phi(1))\right)^2 > 0.$$

In fact, $\det(\phi(\text{even})) > 0$.

May have to ignore odd numbers: restrict attention to even numbers.
Analogously, may need to restrict to multiples of 3 (or 4 or 5 or ...)

Restrict attention to multiples of N.

{multiples of N} is a subgroup of \mathbb{Z}

“Restrict attention to a finite-index subgroup”

Prop. Grp homo $\phi: \mathbb{Z}^k \rightarrow GL_d(\mathbb{R})$

$\Rightarrow \phi$ “almost” extends to homo $\hat{\phi}: \mathbb{R}^k \rightarrow GL_d(\mathbb{R})$

such that $\hat{\phi}(\mathbb{R}^k) \subset \overline{\phi(\mathbb{Z}^k)}$.

(“Zariski closure”)

This means \mathbb{Z}^k is superrigid in \mathbb{R}^k.

“Homomorphisms defined on \mathbb{Z}^k almost extend to be defined on \mathbb{R}^k”

Generalize to nonabelian groups.
Lagrange interpolation:

there is a polynomial curve

\[y = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \]

through any \(n + 1 \) points.
Idea: Zar closure is like *convex hull*.

Image of ϕ controls image of $\hat{\phi}$.

Eg. If all matrices in $\phi(\mathbb{Z})$ commute, then all matrices in $\hat{\phi}(\mathbb{R})$ commute.

Eg. If all matrices in $\phi(\mathbb{Z})$ fix a vector v, then all matrices in $\hat{\phi}(\mathbb{R})$ fix v.

Good properties of $\phi(\mathbb{Z})$ carry over to $\hat{\phi}(\mathbb{R})$.
\(\mathbb{Z}^k \) is a lattice in \(\mathbb{R}^k \). I.e.,

- \(\mathbb{R}^k \) is a (simply) connected matrix grp ("Lie group")
- \(\mathbb{Z}^k \) is a discrete subgroup
- all of \(\mathbb{R}^k \) is within a bounded distance of \(\mathbb{Z}^k \)
 \[\exists C, \ \forall x \in \mathbb{R}^k, \ \exists m \in \mathbb{Z}^k, \ d(x, m) < C. \]

\(H \) is a lattice in \(G \)

Cor. Only countably many simply connected Lie groups have lattices.

Lie groups are of three types:

- solvable (many normal subgrps, e.g., abel)
- simple ("no" normal subgrps, e.g., \(\text{SL}_k(\mathbb{R}) \))
- combination (e.g., \(G = \mathbb{R}^k \times \text{SL}_k(\mathbb{R}) \))

More or less: \(H = \mathbb{Z}^k \times \text{SL}_k(\mathbb{Z}) \)

(\(H \) has solvable part and simple part)
Let us consider *solvable* groups.

A connected subgroup G of $\text{GL}_d(\mathbb{C})$ is **solvable** if it is upper triangular

$$G \subset \begin{pmatrix} \mathbb{C}^* & \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{C}^* & \mathbb{C} \\ 0 & 0 & \mathbb{C}^* \end{pmatrix}$$

(or is after a change of basis).

Eg. All abelian groups are solvable.

Proof. Every matrix can be triangularized over \mathbb{C}. Pairwise commuting matrices can be simultaneously triangularized.
Examples of lattices.

\[G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & 1 & \mathbb{R} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[H = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 0 & 1 & \mathbb{Z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[\overline{H} = G \quad \text{superrigid} \]

\[G = \begin{pmatrix} \mathbb{R}^+ & 0 & 0 \\ 0 & \mathbb{R}^+ & 0 \\ 0 & 0 & \mathbb{R}^+ \end{pmatrix} \]

\[H = \begin{pmatrix} 2^\mathbb{Z} & 0 & 0 \\ 0 & 2^\mathbb{Z} & 0 \\ 0 & 0 & 2^\mathbb{Z} \end{pmatrix} \]

\[\overline{H} = G \quad \text{superrigid} \]
\[
G = \begin{pmatrix}
1 & \mathbb{R} & \mathbb{C} \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\quad H = \begin{pmatrix}
1 & \mathbb{Z} & \mathbb{Z} + \mathbb{Z}i \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\overline{G} = G
\quad \overline{H} = G
\]

\[
G' = \begin{pmatrix}
1 & t & \mathbb{C} \\
0 & 1 & 0 \\
0 & 0 & e^{2\pi it} \\
\end{pmatrix}
\quad \overline{G}' = \begin{pmatrix}
1 & \mathbb{R} & \mathbb{C} \\
0 & 1 & 0 \\
0 & 0 & T \\
\end{pmatrix}
\]

\[
H' = \begin{pmatrix}
1 & \mathbb{Z} & \mathbb{Z} + \mathbb{Z}i \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix} = H
\]

\(H\) is a lattice in both \(G\) and \(G'\).

\[
\overline{H} = G \neq \overline{G}' \quad \text{so} \quad \overline{H} \neq \overline{G}'
\]

\(H\) is not superrigid in \(G'\).

E.g., the identity map \(\phi: H \to H\)
does not extend to homo \(\hat{\phi}: G' \to \overline{H}\).

Proof. \(\overline{H} = G\) is abelian, but \(G'\) is not abelian.
Prop. \(H \) superrigid in \(G \)
\[\Rightarrow \overline{H} = \overline{G} \pmod{Z(G)}. \]

Converse:

Thm (Witte). A lattice \(H \) in a solvable grp \(G \) is superrigid iff \(\overline{H} = \overline{G} \pmod{Z(G)} \).

\(\overline{H} \neq \overline{G'} \): some of the rotations associated to \(G' \) do not come from rotations associated to \(H \)

\[
\begin{align*}
\text{rot} \left(\begin{array}{cc}
\alpha & * \\
0 & \beta \\
\end{array} \right) &= \left(\begin{array}{cc}
\frac{\alpha}{|\alpha|} & 0 \\
0 & \frac{\beta}{|\beta|} \\
\end{array} \right)
\end{align*}
\]
Cor (Witte). A lattice H in a Lie group G is “superrigid” iff

- $H = G \pmod{Z(G) \cdot \text{(cpct ss normal subgrp)}}$
- and simple part of H is “superrigid.”

Thm (Margulis Superrigidity Theorem).
All lattices in $\text{SL}_n(\mathbb{R})$ are “superrigid” if $n \geq 3$. Similar for other simple Lie groups, \mathbb{R}-rank ≥ 2.

Cor (Margulis Arithmeticity Theorem).
Every lattice in $\text{SL}_n(\mathbb{R})$ is “arithmetic” if $n \geq 3$. (like $\text{SL}_n(\mathbb{Z})$)

Only way to make a lattice: take integer points
(and minor modifications)
Similar for other simple groups with \mathbb{R}-rank ≥ 2.

Why superrigidity implies arithmeticity.

Let Γ be a lattice in $\mathrm{SL}_n(\mathbb{R})$, and assume Γ is superrigid.

We wish to show $\Gamma \subset \mathrm{SL}_n(\mathbb{Z})$, i.e., want every matrix entry to be an integer.

First, let us show they are algebraic numbers.

Suppose some $\gamma_{i,j}$ is transcendental.
Then \exists field auto ϕ of \mathbb{C} with $\phi(\gamma_{i,j}) = ???$

Define $\tilde{\phi}(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{pmatrix}$.

This map $\tilde{\phi}: \Gamma \to \mathrm{GL}_n(\mathbb{C})$ is a group homo.

Superrigidity: $\tilde{\phi}$ extends to $\hat{\phi}: \mathrm{SL}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{C})$.

There are uncountably many different ϕ’s, but $\mathrm{SL}_n(\mathbb{R})$ has only finitely many n-dim’l rep’ns (up to change of basis).
Γ is a superrigid lattice in $\text{SL}_n(\mathbb{R})$ and every matrix entry is an algebraic number.

Second, show matrix entries are rational.

Fact. Γ is generated by finitely many matrices. Matrix entries of these generators generate a finite-degree field extension of \mathbb{Q}.

“algebraic number field”

So $\Gamma \subset \text{SL}_n(F)$.

For simplicity, assume $\Gamma \subset \text{SL}_n(\mathbb{Q})$.

Third, show matrix entries have no denominators.

Actually, show denominators are bounded.

(Then finite-index subgrp has no denoms.)

Since Γ is generated by finitely many matrices, only finitely many primes appear in denoms.

So suffices to show each prime only occurs to bounded power.
Γ is a superrigid lattice in $\text{SL}_n(\mathbb{R})$
and every matrix entry is a rational number.

Need to show each prime only occurs to bounded power in denoms.

This is the conclusion of p-adic superrigidity:

Thm (Margulis).

If Γ is a lattice in $\text{SL}_n(\mathbb{R})$, $n \geq 3$, and $\phi: \Gamma \to \text{SL}_k(\mathbb{Q}_p)$ is a group homomorphism, then $\phi(\Gamma)$ has compact closure.

I.e., $\exists k$, no matrix in $\phi(\Gamma)$ has p^k in denom.

Summary of proof:

1) \mathbb{R}-superrigidity \Rightarrow matrix entries “rational”

2) \mathbb{Q}_p-superrigidity \Rightarrow matrix entries $\in \mathbb{Z}$