Some arithmetic groups that do not act on the circle

Dave Witte Morris
University of Lethbridge, Alberta, Canada
http://people.uleth.ca/~dave.morris
Dave.Morris@uleth.ca

Lecture 4
Intro to bounded cohomology
(used to prove actions have a fixed point)

Recall: group cohomology \(H^*(\Gamma; \mathbb{R}) \)
- *cochain* \(c: \Gamma^n \to \mathbb{R} \) is el’t of \(C^n(\Gamma; \mathbb{R}) \)
- *coboundary* \(\delta: C^n(\Gamma; \mathbb{R}) \to C^{n+1}(\Gamma; \mathbb{R}) \)
- \(H^n(\Gamma; \mathbb{R}) = \ker \delta_n / \text{Im} \delta_{n-1} \)

Definition (bounded cohomology)
\(H_b^n(\Gamma; \mathbb{R}) \): require all cochains to be *bdd* funcs on \(\Gamma \).

Example
- \(H^0(\Gamma; \mathbb{R}) = \mathbb{R} = H_0^0(\Gamma; \mathbb{R}) \).
- \(H^1(\Gamma; \mathbb{R}) = \{ \text{homomorphisms } c: \Gamma \to \mathbb{R} \} \)
- \(H^2_b(\Gamma; \mathbb{R}) = \{ \text{bounded} \ text{ homos } c: \Gamma \to \mathbb{R} \} = \{0\} \).

Interested in \(H^2_b(\Gamma) \) — applies to actions on the circle.

Example
Spse \(\Gamma \) acts on circle. I.e., \(\Gamma \subset \text{Homeo}_+(\mathbb{R}/\mathbb{Z}) \).
Each \(g \in \Gamma \) lifts to \(\hat{g} \in \text{Homeo}_+(\mathbb{R}) \).
Not unique: \(\hat{g}(t) = \hat{g}(t) + n \), \(\exists n \in \mathbb{Z} \).
Can choose \(\hat{g}(0) \in [0,1) \).
Let \(c(g, h) = \hat{g}(\hat{h}(0)) - \hat{gh}(0) \in \mathbb{Z} \).

Exercise
- \(c \) is a 2-cocycle:
 \[
 c(h, k) - c(gh, k) + c(h, gk) - c(g, h) = 0
 \]
- \(c(g, h) \in \{0, 1\} \).

So \([c] \in H^2_b(\Gamma; \mathbb{Z}) \). The *bdd Euler class* of the action.
Well defined: independent of basepoint “0”, etc.

Proposition (Ghys)
\([c] = 0 \text{ in } H^2_b(\Gamma; \mathbb{Z}) \iff \Gamma \text{ has a fixed point in } S^1 \).

Proof.
(\(\Rightarrow \)) Wolog fixed point is 0.
Then \(\hat{g}(0) = 0 \), so \(c(g, h) = 0 \) for all \(g, h \).
(\(\Leftarrow \)) \(c(g, h) = \varphi(gh) - \varphi(g) - \varphi(h), \exists \text{ bdd } \varphi: \Gamma \to \mathbb{Z} \).
Let \(\hat{g}(\hat{h}) = \hat{g}(\hat{h}) + \varphi(\hat{h}) \), so
- \(\hat{g} \hat{h} = gh \), so \(\hat{g} \) is a lift of \(\Gamma \) to \(\text{Homeo}_+(\mathbb{R}) \), and
- \(|\hat{g}(0)| \leq |\hat{g}(0)| + |\varphi(h)| \leq 1 + \|\varphi\| \).
\(\hat{g} \)’s orbit of 0 is bdd subset of \(\mathbb{R} \), so has a supremum,
which is fixed pt of \(\hat{g} \); image in \(S^1 \) is fixed pt of \(\Gamma \).

Theorem (Burger-Monod)
Comparison map \(H^2_b(\Gamma; \mathbb{R}) \to H^2(\Gamma; \mathbb{R}) \) is injective
if \(\Gamma \) is large arith group.

Kernel of the comparison map
Let \(c \in Z^2_b(\Gamma; \mathbb{R}) \). Assume \([c] = 0 \text{ in } H^2(\Gamma; \mathbb{R}) \).
I.e., \(c = \delta \alpha, \exists \alpha \in C^1(\Gamma; \mathbb{R}) \).
\(|\alpha(gh) - \alpha(g) - \alpha(h)| = |\delta \alpha(g, h)| \leq \|c\|_\infty \) is bdd.
\(\alpha \) is almost a homo — a *quasimorphism*.

Exercise
Kernel of \(H^2_b(\Gamma) \to H^2(\Gamma) \) is \(\text{NearHom}(\Gamma; \mathbb{R}) \).
NearHom(\Gamma; \mathbb{R}) = \{ \alpha: \Gamma \to \mathbb{R} \mid \text{bdd dist from hom} \}
Exercise

Kernel of $H^2_b(F_2) \to H^2(\Gamma)$ is Quasimorphisms(Γ, \mathbb{R}).

Example: $H^2_b(F_2)$ is infinite-dimensional.

Proof. Construct lots of quasimorphisms (not homos).

Homo $\varphi_a(x) =$ the (signed) # occurrences of a in x.

E.g., $\varphi(a^2 b a^3 b^{-3} a^{-7} b^2) = 2 + 3 - 7 = -2$.

Every homo $F_2 \to \mathbb{R}$ is a linear comb of φ_a and φ_b.

$\varphi_{ab}(x) =$ # occurrences of ab in x (reduced)

E.g., $\varphi_{ab}(a^2 b a^3 b^{-3} a^{-7} b^2) = 1 - 1 = 0$.

Exercise: 1) φ_w is a quasimorphism, \forall reduced w.

2) φ_w is not within bdd distance of lin span of

$\{\varphi_b, \varphi_a, \varphi_{ab}, \varphi_{ab}^k, \varphi_{ab}^{k+2}, \varphi_{ab}^{k+3}, \ldots\}$.

Example: homomorphism $\varphi : \Gamma \to \mathbb{R}$

$\Rightarrow \{g \in \Gamma \mid \varphi(g) > 0\}$ is normal semigroup.

Exercise: Spse $\varphi : \Gamma \to \mathbb{R}$ unbdd quasimorphism. Stabilize: let $\varphi(g) = \lim (\varphi(g^n/n)$.

$\Rightarrow \varphi$ is unbounded quasimorphism.

$\Rightarrow (\varphi(h^{-1}gh) = \varphi(g)$.

$\Rightarrow \{g \in \Gamma \mid \varphi(g) > C\}$ is normal semigroup.

Open Problem. For $\Gamma = \text{SL}(3,\mathbb{Z})$:

- Every normal semigroup in Γ is a subgroup.
- $\forall g \in \Gamma$, e is a product of conjugates of g.
- \mathfrak{F} (nonempty) bi-invariant partial order on Γ.

All are equivalent. ($\$100$ for solution)

Further reading

- M. Gromov: Volume and bounded cohomology.
 [http://archive.numdam.org/article/PMIHES_1982__56__5_0.pdf]

 [http://arxiv.org/abs/0811.0051]

 [http://dx.doi.org/10.1090/S0002-9939-98-04368-8]