Cartan-decomposition subgroups

Dave Witte

Department of Mathematics
Oklahoma State University
Stillwater, OK 74078

 $\label{lem:dwitte@math.okstate.edu} \\ \text{http://www.math.okstate.edu/\simdwitte}$

Joint work with Hee Oh
heeoh@math.princeton.edu
continuing with Alessandra Iozzi
iozzi@math.umd.edu

Eg. $G = SL(2, \mathbb{R})$ is transitive on $X = \mathbb{R}^2 - \{0\}$. (So X is a homogeneous space.)

Let F = unit circle (compact).

There is a compact subset of X that cannot be moved disjoint from itself.

$$\forall g \in G, \ gF \cap F \neq \emptyset.$$

Group-theoretic restatement.

Stabilizer of point
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 is $H = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ so $X \cong G/H$.

Let $C \subset G$ (compact) with Cv = F.

$$\emptyset \neq gF \cap F = gCv \cap Cv = gCH \cap CH$$

$$\Rightarrow gc_1h_1 = c_2h_2$$

$$\Rightarrow g \in CHC^{-1}$$

Defn. H is a Cartan-decomposition subgrp (CDS):

- \exists compact $C \subset G$, such that G = CHC
- H is closed and connected.

Rem. C is only a subset, not a subgroup.

Can C always be chosen to be a subgroup?
(I think not.)

Motivation. Tessellation:

symmetric tiling of a homogeneous space X.

$$\forall$$
 tiles $T_1, T_2,$

 \exists isometry ϕ ,

$$\phi(T_1) = T_2$$

and

$$\phi(\text{tile}) = \text{tile}$$

Let $\Gamma = \text{symmetry group of the tessellation}$.

Any tile is a fundamental domain for $\Gamma \setminus X$.

So $\Gamma \setminus X$ is compact

and Γ acts properly discontinuously on X.

Defn. Γ acts properly discontinuously on X:

$$\forall \text{ cpct } F \subset X,$$

$$\{ \gamma \in \Gamma \mid \gamma F \cap F \neq \emptyset \}$$
 is finite.

(In particular, all orbits are discrete.)

Conversely: if

- $\Gamma \subset \operatorname{Isom}(X)$,
- $\Gamma \backslash X$ is compact and
- \bullet Γ acts properly discontinuously on X, then translates of any fund domain yield a tess.

$$G = \mathrm{SL}(n,\mathbb{R})$$

= (Zariski) connected, almost simple Lie grp H = closed, connected subgroup of G

Question. Does G/H have a tessellation? I.e., is there a discrete subgroup Γ of G, such that

- ullet Γ acts properly discontinuously on G/H; and
 - $\Gamma \backslash G/H$ is compact?

Easy examples.

If G/H is compact: let $\Gamma = e$.

If H is compact: let Γ be a lattice in G.

Defn. Γ is a (cocompact) lattice in G:

- Γ is discrete
- $\Gamma \backslash G$ is compact.

A. Borel proved there is a lattice in every simple G.

Assumption. Neither H nor G/H is compact.

Therefore Γ must be infinite and Γ cannot be a lattice in G.

Prop. H is a Cartan-decomposition subgroup $\Rightarrow G/H$ does not have a tessellation.

Proof. $\exists \operatorname{cpct} F \subset G/H$, s.t. $\forall g \in G, \ gF \cap F \neq \emptyset$ $\Rightarrow \Gamma = \{ \gamma \in \Gamma \mid \gamma F \cap F \neq \emptyset \} \text{ is finite. } \rightarrow \leftarrow$

$$G = \mathrm{SL}(n,\mathbb{R})$$

$$K = SO(n)$$
 rotations (compact)

$$A = \begin{pmatrix} * & & \\ & * & \\ & \ddots & \\ & & * \end{pmatrix} \text{ diagonal}$$

$$N = \begin{pmatrix} 1 & * & * & * \\ & 1 & * & * \\ & & \ddots & * \\ & & & 1 \end{pmatrix}$$
 upper triangular

Cartan decomposition. G = KAK

so A is a Cartan-decomposition subgroup

Fact. G = KNK [Kostant]

so N is a Cartan-decomposition subgroup

Prop. Every (connected, noncompact) subgrp H of $SL(2,\mathbb{R})$ is a Cartan-decomposition subgroup.

Cor. No (interesting) homogeneous space of $SL(2,\mathbb{R})$ has a tessellation.

Proof of proposition. H contains either A or N (or a conjugate).

Better proof.

$$e \longrightarrow A^{+}$$

$$\mu(e) = e, \qquad \lim_{h \to \infty} \mu(h) = \infty \qquad \Rightarrow \mu(H) = A^{+}$$
I.e., $A^{+} \subset KHK$.

So $G = KA^+K \subset KHK$.

Rem. $\mu(H) = A^+ \Leftrightarrow KHK = G$ $\Rightarrow H \text{ is a CDS.}$

Same proof. \mathbb{R} -rank $G = 1 \Rightarrow H$ is a CDS.

Given $g \in G$.

 $G = KAK \Rightarrow \exists a \in A, \text{ s.t. } g \in KaK.$ But a is not unique

Let
$$A^+ = \left\{ \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \middle| \begin{array}{l} a_1 \ge a_2 > 0 \\ a_1 a_2 = 1 \end{array} \right\}$$

= "positive Weyl chamber."

Then $\exists ! a \in A^+$, s.t. $g \in KaK$.

Defin (Cartan projection). $\mu: G \to A^+$ by $g \in K \mu(g) K$.

 μ is continuous and proper.

H is a CDS

$$\Leftrightarrow \exists \operatorname{cpct} C \subset G, \ G \subset CHC$$

 $\Leftrightarrow \exists \operatorname{cpct} C \subset G, \ A^+ \subset C \mu(H) C$

Can take C to be in A!

Thm (Benoist, Kobayashi). H is a CDS iff $\mu(H)$ comes within bdd distance of every pt of A^+ i.e., $\exists cpct \ C \subset A$, $s.t. \ \mu(H)C \supset A^+$.

Not every subgroup of $SL(3,\mathbb{R})$ is a CDS.

Eg. dim $H = 1 \Rightarrow H$ is not a CDS.

$$A^{+} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} \middle| \begin{array}{l} a_{1} \geq a_{2} \geq a_{3} > 0 \\ a_{1}a_{2}a_{3} = 1 \end{array} \right\}$$

$$\leftrightarrow \left\{ (s,t) \in (\mathbb{R}^{+})^{2} \middle| \left(\begin{array}{c} s \\ t/s \\ 1/t \end{array} \right) \in A^{+} \right\}$$

$$= \left\{ (s,t) \in (\mathbb{R}^{+})^{2} \middle| s \geq t/s \geq 1/t \right\}$$

$$= \left\{ (s,t) \in (\mathbb{R}^{+})^{2} \middle| \sqrt{s} \leq t \leq s^{2} \right\}$$

$$\mathrm{SL}(3,\mathbb{R}): A^+ \leftrightarrow \{(s,t) \in (\mathbb{R}^+)^2 \mid \sqrt{s} \le t \le s^2\}$$

Thm (Benoist, Kobayashi). H is a CDS iff $\mu(H)$ comes within bdd distance of every pt of A^+

Cor. $\dim H = 1 \Rightarrow H$ is not a CDS.

Cor.
$$H = \begin{pmatrix} 1 & * & * \\ & 1 & 0 \\ & & 1 \end{pmatrix}$$
 is not a CDS.

$$\exists k \in \begin{pmatrix} 1 \\ \text{SO}(2) \end{pmatrix}, k^{-1}hk \in \begin{pmatrix} 1 & 0 & * \\ & 1 & 0 \\ & & 1 \end{pmatrix} = U.$$

So $\mu(H) = \mu(U)$.

Prop.
$$\left\{ \left(\begin{array}{ccc} 1 & u & v \\ & 1 & u \\ & & 1 \end{array} \right) \middle| u, v \in \mathbb{R} \right\} \text{ is a CDS.}$$

Suffices: $\mu(H)$ within bdd dist of every pt of ∂A^+ .

[Does not work for $SL(4, \mathbb{R})$ (or \mathbb{R} -rank $G \geq 2$).]

Actually only need one wall.

 $(h \text{ near one wall} \Rightarrow h^{-1} \text{ near other wall.})$ This is special for $SL(n, \mathbb{R})$, not other G. How to calculate $\mu(h)$.

$$A^{+} = \left\{ \left(\begin{array}{cc} s & & \\ & t/s & \\ & & 1/t \end{array} \right) \middle| \sqrt{s} \le t \le s^{2} \right\}$$

For $a \in A^+$: $s_a \approx ||a||$ $t_a \approx ||a^{-1}||$

For $g \in G$:

$$s_{\mu(g)} \approx \|\mu(g)\| = \|k_1 g k_2\| = \|g\|$$

 $t_{\mu(g)} \approx \|\mu(g)^{-1}\| = \|g^{-1}\|$

Thus, $\mu(g) \leftrightarrow (||g||, ||g^{-1}||)$.

so
$$\mu \begin{pmatrix} 1 & u & 0 \\ & 1 & u \\ & & 1 \end{pmatrix} \approx (|u|, u^2)$$
 is near a wall.

Thm (O–W).

Every CDS of $SL(3,\mathbb{R})$ contains a conjugate of:

$$\begin{cases} \left(\begin{array}{ccc|c} 1 & r & s \\ 0 & 1 & r \\ 0 & 0 & 1 \end{array} \right) & r, s \in \mathbb{R} \end{cases}, \\ \left\{ \left(\begin{array}{ccc|c} e^t & te^t & s \\ 0 & e^t & r \\ 0 & 0 & e^{-2t} \end{array} \right) & r, s, t \in \mathbb{R} \right\}, \\ \left\{ \left(\begin{array}{ccc|c} e^{pt} & r & 0 \\ 0 & e^{qt} & 0 \\ 0 & 0 & e^{-(p+q)t} \end{array} \right) & r, t \in \mathbb{R} \right\}, \\ \left(\max\{p, q\} = 1, \min\{p, q\} \ge -1/2), \text{ or } \right. \\ \left. \left\{ \left(\begin{array}{ccc|c} e^t \cos pt & e^t \sin pt & s \\ -e^t \sin pt & e^t \cos pt & r \\ 0 & 0 & e^{-2t} \end{array} \right) & r, s, t \in \mathbb{R} \right\}, \\ \left(p \ne 0 \right). \end{cases}$$

Thm (Benoist, O-W). If $G = SL(3, \mathbb{R})$, then G/H does not have a tessellation. [Benoist proved for $H = SL(2, \mathbb{R})$. Same method for other subgroups.]

In general [Benoist], for \mathbb{R} -rankG=2:

 \exists representations ρ_1 and ρ_2 of G, s.t. $\mu(g) \approx (\|\rho_1(g)\|, \|\rho_2(g)\|)$.

Walls are given by $\|\rho_1(g)\| = \|\rho_2(g)\|^{c_i}$.

Eg.
$$G = SL(3, \mathbb{R}).$$

$$\rho_1(g) = g, \qquad \rho_2(g) = (g^{-1})^T$$

$$c_1 = 1/2, \qquad c_2 = 2$$

Eg.
$$G = SO(2, n)$$
 or $SU(2, n)$.
 $\rho_1(g) = g, \qquad \rho_2(g) = g \land g$
 $c_1 = 1, \qquad c_2 = 2$

$$SO(2, n) = Isom \left(v_1 v_{n+2} + v_2 v_{n+1} + \sum_{i=3}^{n} v_i^2\right)$$

$$\mathfrak{a} + \mathfrak{n} = \left\{ \begin{pmatrix} \tau_1 & \phi & x & \eta & 0 \\ & \tau_2 & y & 0 & -\eta \\ & 0 & -y^T & -x^T \\ & & -\tau_2 & -\phi \\ & & & -\tau_1 \end{pmatrix} \right\}$$

$$t_1, t_2, \phi, \eta \in \mathbb{R}, \ x, y \in \mathbb{R}^{n-2}$$

Thm (O–W). $H \subset N$ is a CDS if

- $\dim H = 2$, $\mathfrak{u}_{\alpha+2\beta} \subset \mathfrak{h}$, $\exists u \in \mathfrak{h}$ s.t. $\phi_u y_u \neq 0$;
- $\dim H \geq 2$,
 - $\exists u \in \mathfrak{h} \text{ s.t. } \dim \langle (\phi_u, x_u), (0, y_u) \rangle = 1;$
 - $\exists v \in \mathfrak{h} \text{ s.t. either}$
 - $\dim\langle(\phi_v, x_v), (0, y_v)\rangle = 2 \ or$
 - $y_v = 0$ and $||x_v||^2 = -2\phi_v \eta_v$.

Thm (O–W). $H \subset N$ is **not** a CDS if

- $\dim H \leq 1$; or
- $\forall u \in \mathfrak{h}, \ \phi_u = 0 \ and \ \dim\langle x_u, y_u \rangle \neq 1; \ or$
- $\forall u \in \mathfrak{h}, \ \phi_u = 0 \ and \ \dim \langle x_u, y_u \rangle = 1; \ or$
- $\exists X_0 \subset \mathbb{R}^{n-2}, x_0 \in X_0, x' \in X_0^{\perp}, \eta_0 \in \mathbb{R} \ s.t.$
 - $\|x_0\|^2 \|x'\|^2 2\eta_0 < 0,$
 - $\forall u \in \mathfrak{h}, y_u = 0, x_u \in \phi_u x' + X_0,$ and $\eta_u = \phi_u \eta_0 + x_0 \cdot x.$

For $u \in \mathfrak{n}$, $\exp(u) =$

Thm (Kobayashi). $H, L \subset AN$ and $L \subset CHC$. If dim $L > \dim H$, then G/H does not have a tess.

Thm (O–W). $H \subset AN$, dim $H \geq 2$. If $\not\exists L \subset AN$, s.t. $L \subset CHC$ and dim $L > \dim H$, then

- $H \sim SO(1, n) \cap AN$; or
- $H \sim L_5 \cap AN$; or
- n even and $H \sim H_B$; or
- $n \ odd$, $\dim H = n 1$, $SU(1, \frac{n-1}{2}) \subset CHC$.

Proof. Inspect list of non-CDS subgroups, compare image of Cartan projection.

Eg. $\forall h \in \mathrm{SU}(1, \lfloor n/2 \rfloor)$, we have $\mu(h) \approx ||h||^2$.

If $\exists h_n \to \infty$ in H, s.t. $\mu(h_n) \approx ||h_n||^2$, then $\exists \operatorname{cpct} C \subset G$ with $\operatorname{SU}(1, \lfloor n/2 \rfloor) \subset CHC$. $L_5 \cong \mathrm{PSL}(2,\mathbb{R})$ = image of 5-dim'l rep of $\mathrm{SL}(2,\mathbb{R})$.

$$\mathfrak{h}_{B} = \left\{ \left(\begin{array}{cccc} \tau & 0 & x & \eta & 0 \\ & \tau & B(x) & 0 & -\eta \\ & & \ddots & \end{array} \right) \middle| \begin{array}{ccc} x \in \mathbb{R}^{2m-2} \\ t, \eta \in \mathbb{R} \end{array} \right\}$$

 $B:\mathbb{R}^{n-2}\to\mathbb{R}^{n-2}$ has no real eigenvalues

- $H \sim \mathrm{SO}(1,n) \cap AN$ n even: G/H has a tess [Kulkarni] $(\Gamma \subset \mathrm{SU}(1,n/2))$ n odd: G/H has no tess [Kulkarni]
- $H \sim L_5 \cap AN$ L_5 is tempered in G [Oh],

 so G/H has no tess [Margulis]
- n even and $H \sim H_B$ G/H has a tess $(\Gamma \subset \mathrm{SO}(1,n))$ special case [Kulkarni]: $\mathrm{SU}(1,n/2) \cap AN$
- n odd, dim H = n 1, SU $(1, \frac{n-1}{2}) \subset CHC$. Conj. $G/SU(1, \frac{n-1}{2})$ has no tess. ???

References

- \bullet Y. Benoist, Actions propres sur les espaces homogènes réductifs, Ann. Math. 144 (1996) 315–347.
- A. Borel: Compact Clifford-Klein forms of symmetric spaces, *Topology* 2 (1963) 111–122.
- A.Iozzi & D.Witte, Cartan-decomposition subgroups and compact Clifford-Klein forms of $\mathrm{SU}(2,n)$ (in preparation).
- T. Kobayashi, Criterion of proper actions on homogeneous spaces of reductive groups, *J. Lie Th.* 6 (1996) 147–163.
- T. Kobayashi, Discontinuous groups and Clifford Klein forms of pseudo-Riemannian homogeneous manifolds, in: B. Ørsted & H. Schlichtkrull, eds., Algebraic and Analytic Methods in Representation Theory, Academic Press, New York, 1997, pp. 99–165.
- B. Kostant, On convexity, the Weyl group, and the Iwasawa decomposition, Ann. Sc. ENS. 6 (1973) 413–455.
- R. Kulkarni, Proper actions and pseudo-Riemannian space forms, Adv. Math. 40 (1981) 10–51.

- F. Labourie, Quelques résultats récents sur les espaces localement homogènes compacts, in: P. de Bartolomeis, F. Tricerri and E. Vesentini, eds., *Manifolds and Geometry*, Symposia Mathematica, v. XXXVI, Cambridge U. Press, 1996.
- G. A. Margulis, Existence of compact quotients of homogeneous spaces, measurably proper actions, and decay of matrix coefficients. *Bull. Soc. Math. France* 125 (1997) 447–456.
- H. Oh, Tempered subgroups and representations with minimal decay of matrix coefficients, *Bull. Soc. Math. France* 126 (1998) 355–380.
- H.Oh & D.Witte, Cartan-decomposition subgroups of SO(2, n) (preprint).
- H.Oh & D.Witte, Compact Clifford-Klein forms of homogeneous spaces of SO(2, n) (preprint).
- H.Oh & D.Witte, New examples of compact Clifford-Klein forms of homogeneous spaces of SO(2, n). *Internat. Math. Res. Notices* (to appear).
- M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972.