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Abstract Species differences in tolerance to environ-
mental stressors can contribute to differences in species
distribution and abundance along river gradients.
Climate change and intensive agriculture are likely to
have major effects on fish populations in temperate
zones, yet understanding of the interactions between
temperature and chemical stressors on fish physiology
is limited. The objective of this study was to compare
the stress responses of the Mountain Whitefish,
(Prosopium williamsoni, a cold-water fish) and White
Sucker (Catostomus commersoni, a cool-water fish),
along a temperature and pesticide gradient in the
Oldman River, Southern Alberta in spring and summer.
Fish were seined, placed into an enclosure, and plasma
cortisol, glucose, liver glycogen, and condition factor
were measured. Plasma acetylcholinesterase (AChE)
activity was used as an indicator of exposure to
organophosphate and carbamates pesticides. Whitefish
had lower plasma AChE activity and lower liver
glycogen reserves compared to suckers at all sites and
all sampling times but the differences in plasma
cortisol were not species-specific and there were no
differences in plasma glucose levels, except at one site.
Plasma cortisol increased, and plasma glucose de-

creased along a downstream river gradient in whitefish
in both spring and summer; in sucker only plasma
cortisol fluctuated and only in the summer. Liver
glycogen decreased along the river gradient in both
species at both seasons. Our study detected important
species-specific differences in AChE activities and
responses of the physiological stress axis, suggesting
that whitefish are more sensitive to temperature and
pesticide stress than suckers.
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Introduction

Rivers are complex systems where many fish species
coexist along elevational gradients, and species differ-
ences in tolerance to environmental stressors can
contribute to differences in distribution and abun-
dance. Fish in rivers draining agricultural areas may
be exposed to a variety of concurrent stressors (Eder
et al. 2007; Couillard et al. 2008a, b), including
agrichemicals, increasing water temperatures, and
habitat alterations resulting from flow regulation
(dams, weirs, and water withdrawals). It is difficult
to assess the impact of these multiple stressors on the
physiological integrity of fish, especially in species
for which the physiological tolerance thresholds have
not been characterized.
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Species-specific responses of fish have been
documented for many endpoints, including vulner-
ability to toxicants, acetylcholinesterase (AChE)
inhibition, metal uptake and metallothionein con-
centration (Van Dolah et al. 1997; Linde-Arias et al.
2008; Miller et al. 2009a), cortisol secretion (Lacroix
and Hontela 2004; Jentoft et al. 2005), and vulner-
ability to oxidative stress (Miller et al. 2009b).
Differences in tolerance to thermal stress also exist;
fish are classified as warm-, cool- or cold-water
species according to their thermal preference (Eaton
et al. 1995). Cool- and cold-water fish species often
coexist, particularly when their movements are
restricted by dams and weirs. As climate changes
and water temperature increases, cold-water fish
species in rivers draining agricultural areas in
temperate zones may be particularly vulnerable since
they may be exposed concurrently to agrichemicals
and high temperatures (Couillard et al. 2008a, b).

In agricultural drainages fish may be exposed to
short-term spikes of pesticides during spraying and rain
events, or chronic exposures in areas where streams
and irrigation canals drain sprayed areas (Morrison and
Wells 1981). Exposures to organophosphate (OP) and
carbamate (CB) pesticides lower the activity of the
enzyme AChE, and cause changes in behaviour,
metabolism, feeding (Pavlov et al. 1992; de Aguiar et
al. 2004; Kavitha and Venkateswara Rao 2008) and
reproduction (Bhattacharya 1993). Pesticides also
influence the physiological stress response and cortisol
secretion in fish (Bisson and Hontela 2002; Dorval et
al. 2005; Teles et al. 2007), and decrease the upper
temperature tolerance limits (Patra et al. 2007). There
is also evidence that toxicity of pesticides to fish
increases with temperature (Altinok et al. 2006).

Fish have specific thermal requirements and select
habitats near their optimal temperature (Eaton et al.
1995; Eaton and Scheller 1996; Dill 1987). However,
they will expand their temperature range in response to
food availability, predators, competition, or social
dominance (Beitinger and Magnuson 1975; Dill 1987).
Increasing water temperature is already considered a
widespread and problematic stressor in salmonids on the
West Coast and displacement of cold-water, northern,
high latitude and high altitude species of fish is
predicted in many global warming models (Daufresne
et al. 2003; Couillard et al. 2008a). Water temperatures
outside the thermal preference range, specifically
warmer water temperatures, can cause thermal stress

which depletes energy reserves (Viant et al. 2003),
decreases growth rates (Meeuwig et al. 2004), impairs
reproduction (Daufresne et al. 2003; Ito et al. 2008) and
changes behaviour (Quigley and Hinch 2006).

A combination of climate change and intensive
agriculture is likely to have major effects on fish
populations in temperate zones, yet the understanding
of the interactions between temperature and chemical
stressors on the physiological status of fish remains
limited. Moreover, basic physiological data for many
wild fish species are lacking. The objective of this study
was to investigate physiological species-specific
responses to multiple concurrent stressors (confinement,
pesticides and warm temperature) in Mountain White-
fish (Prosopium williamsoni, a cold-water fish) and
White Sucker (Catostomus commersoni, a cool-water
fish) in a river draining an area of intensive agriculture
in Southern Alberta. Plasma cortisol, glucose, liver
glycogen, and condition factor were measured as the
physiological stress response endpoints, and plasma
AChE activity was used as an indicator of exposure to
OP and CB pesticides. We hypothesized that species-
specific differences in responses to multiple stressors
exist and that at temperature-impacted sites, the
Mountain Whitefish will exhibit an increased stress
response compared to the White Sucker.

Study sites and methods

Description of sampling sites and fish species

Fish were sampled at five sites along the Oldman
River (Fig. 1), in southern Alberta, Canada during
spring and summer 2005 (Table 1). The Oldman
River originates in the Rocky Mountains and flows
east, draining an area of intensive grain and livestock
production. Runoff from these operations contains
agricultural chemicals including pesticides that have
been detected in the Oldman River (Koning et al.
2006; Alberta Environment Pesticide Monitoring
Program, Table 2). Moreover, the river exhibits a
west to east temperature gradient, with higher temper-
atures in the lower reaches (Fig. 2). Whitefish and
suckers were sampled for this study because both
species are present in the Oldman River and they have
different species-specific temperature optima. White-
fish represent a cold-water fish species with a
maximum temperature tolerance of 23.1°C (Eaton
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and Scheller 1996) and a thermal preference range
between 12.8°C to 17.7°C [upper temperature prefer-
ence (UTP)] (Ihnat and Bulkley 1984). Suckers
represent a cool-water species with a maximum
temperature tolerance of 27.4°C (Eaton and Scheller
1996) and a thermal preference range of 18.3°C to
24°C (UTP) (Eaton et al. 1995). The UTPs for sucker
and whitefish are indicated in Fig. 2.

Capture and sampling of the fish

Fish were captured by a beach seine (30×1.8 m,
0.4 cm mesh) between 10:00 and 13:30 each day. The

seine was deployed from a boat, and was pulled in
and closed in about 20 min. Fish were transferred
from the seine to floating enclosures (0.68×1×
0.47 m) and were kept in the enclosure until 14:00
when they were removed in groups of 3 to 5. They
were deeply anaesthetized in a solution of 0.15 gL-1

of tricaine methanesulphonate (MS-222) in about
1 min; blood sampled from the caudal vasculature
(∼30 s), and plasma was collected and frozen in liquid
nitrogen. The fish were euthanized by spinal transec-
tion, weights and lengths recorded, and the liver was
dissected and frozen in liquid nitrogen. Plasma and
liver samples were kept frozen at -80°C until analysis.
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Fig. 1 Location of sam-
pling sites (Summerview,
Ft McLeod, Pearce Rd,
Popson and Pavan) in the
Oldman River Basin,
Southern Alberta. Black tri-
angles represent site loca-
tions, the heavy bar I is the
location of the Oldman Dam
and arrows indicate flow
direction, with Summerview
the most upstream site and
Pavan the most downstream
site. Highway 36, a site
where water temperature
and pesticides were moni-
tored by Alberta Environ-
ment is also included

Table 1 Characteristics of sites sampled in the Oldman River, Alberta

Site Distance from
Oldman dam (km)

Latitude and
longitude

Date Deptha (m) Velocitya (m·s-1) Flowa (m3·s-1)

Summerview 7 49°33’N,113°49’W Summer 2005 0.6 0.4 3.6-6

Fort McLeod 70 49°44’N, 113°13’W Spring 2005 0.4 0.3 2.0

Summer 2005 0.3-0.7 0.1-0.6 0.9-5.2

Pearce Road 105 49°48’N, 113°13’W Spring 2005 0.4-0.7 0-0.5

Summer 2005 0.4-0.5 0.1-0.7 0.5-5.5

Popson Park 160 49°44’N, 112°51’W Spring 2005 0.3-1.1 0.1-0.5 0.5-5.0

Summer 2005 0.7 - -

Pavan Park 175 49°38’N, 112°51’W Spring 2005 0.4-0.6 0.1-0.4 0.6-3.0

Summer 2005 0.4-0.8 1.4-1.6 9.6-31.5

aMeasurements taken at points in the river where fish were seined; -, data not available
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Biochemical analyses

Acetylcholinesterase (AChE)

The AChE activity was measured with an assay modified
from Chuiko (2000). Plasma (2 μL) was pipetted into a
microplate and 120μL of ISO-OMPA (Sigma Tetraiso-
propyl pyrophosphoramide, T1505) was added. The
samples were incubated at room temperature for 10 min
and 10 μL of DTNB (Sigma 5,5’ Dithiobis [2-
nitro-benzoic acid], D8130) and 10 μL of Acethylthio-
chlorine Iodine (Sigma minimum 98% TLC, A5751)
were added, followed by a 10 min incubation at room
temperature. The microplate was read at 405 nm in a
microplate reader every 2 min for 10 min. Concentra-
tion of AChE for each sample was measured from the
slope; internal standards (Normal Serum Control, TC-
TROL[N], Teco Diagnostics) were used to ensure the
accuracy of the assay was maintained.

Physiological stress response

Plasma cortisol was determined with diagnostic kits
(MP Biomedicals Diagnostics Division 07-221102);
assay characteristics and accuracy were verified, as
described previously (Hontela et al. 1995). Plasma

glucose was determined with a colorimetric assay
using the GOD-PAP reagent (Roche 1929526) at
512 nm. Liver glycogen was determined using a
method modified from Levesque et al. (2002).

Statistical analysis

The statistical program JMP IN version 5.1 was used to
perform statistical tests at p<0.05. One way ANOVA
was used for single factor comparisons, a t-test was
used to compare species at each site. Significant
differences between means were determined using
Tukey-Kramer HSD post hoc test and log-normal data
were normalized using a log transformation.

Results

Temperature regimes

Water temperatures recorded by Alberta Environment
in 2004 and 2005 show that the sampling sites used in
this study are situated along a temperature gradient,
with Summerview as the coldest site and Pavane the
warmest site (Fig. 2). Temperatures measured on
sampling days by our team confirmed the gradient.

Table 2 Concentrations of chemicals detected in water at sites situated along the Oldman River, Alberta

Compound Summerview Lethbridge Popson Park Hwy 36

Herbicide (μg·L-1)b 2,4-D <0.005(04)a 0.005-0.026(04) 0.006-0.082(04)

Dichlorprop (2,4-DP) <0.005(04) <0.005-0.007(04) <0.005(04)

MCPA <0.005(04) <0.005-0.01(04) 0.003-0.022(04)

MCPP (Mecoprop) <0.005(04) <0.005(04) 0.004-0.018(04)

Dicamba (Banvel) <0.005(04) <0.005(04) <0.005-0.006

Insecticide (μg·L-1)b Dimethoate (Cygon) <0.05(04) <0.05(04) <0.05(04)

Other Chemicalsc (ng·L-1) Cholesterol 74.70(05) 108.15(05) 217.98(05)

Desmosterol 28.46(05) 36.34(05) 51.58(05)

Cholestanol 3.61(05) 12.26(05) 36.27(05)

7-Ketocholesterol 1.65(05) 7.27(05) 9.90(05)

β-Sitosterol 40.56(05) 48.62(05) 118.74(05)

Campesterol 9.43(05) 10.12(05) 16.75(05)

Stigmastanol 2.47(05) 10.64(05) 33.30(05)

Stigmasterol 19.80(05) 42.01(05) 118.20(05)

Fucosterol 65.18(05) 111.63(05) 208.14(05)

a Year of sampling indicated in bracket; 2004 as (04) and 2005 as (05)
b data from Alberta Environment Monitoring Program (http://www3.gov.ab.ca/env/)
c Data from Jeffries et al. 2008
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Water temperatures fluctuated throughout the sampling
period and were always below the maximum temper-
ature tolerance for whitefish and suckers, 23.1°C and
27.4°C respectively (Eaton and Scheller 1996). How-
ever water temperatures did exceed the UTP (17.7°C)
for whitefish during summer sampling at Pearce Rd.
site (Fig. 2). Water temperatures consistently exceeded
UTP for whitefish at the most downstream sites
Popson and Pavan where whitefish were not caught
in summer. Suckers were not caught at the Summer-
view site (<15°C) in any of the sampling periods.

Pesticide exposure

Water concentrations of herbicides and other chemicals
in the Oldman river increased along a west to east
gradient (Table 2), however several of the OP and CB

pesticides monitored by Alberta Environment (Koning
et al. 2006; http://environment.alberta.ca/) were below
the detection limits at all sites: Chlorpyrifos-ethyl,
Diazinon and Phorate <0.005 μg·l-1, Parathion<
0.01 μg·l-1, Terbufos<0.03 μg·l-1, Malathion and
Triallate<0.05 μg·l-1, Ethiion<0.1 μg·l-1, Disulfoton
and Gluthion <0.2 μg·l-1. Plasma AChE activities, used
as indicators of exposure to OP and CB pesticides, are
presented in Fig. 3. At all sites and all sampling times,
whitefish had significantly lower plasma AChE activity
(p<0.05, t-test) compared to suckers. In spring,
plasma AChE activities in whitefish were higher at
upstream sites while plasma AChE in suckers were
not significantly different among sites (p>0.05,
ANOVA) (Fig. 3a). Plasma AChE activity in
summer was lower at upstream sites in both suckers
and whitefish (Fig. 3b).

Fig. 2 Average water temperatures for each site during sampling in
summer 2004 and 2005. Data for Summerview, Lethbridge and
Highway 36 received from Alberta Environment. Upper thermal

preference (UTP) for sucker and for whitefish are indicated by the
lines on the graph for sucker (‐ � ‐ �) and whitefish (—)

Environ Biol Fish (2010) 88:119–131 123

http://environment.alberta.ca/


Physiological stress response

Plasma cortisol levels are presented in Fig. 4. In
contrast to AchE activities, differences in plasma
cortisol were not species-specific. Cortisol levels in
whitefish were higher (p<0.05) compared to suckers
at Pearce Rd. in spring and also in the summer when
water temperature exceeded UTP for whitefish
(Fig. 2). In both spring and summer, plasma cortisol
levels were higher in whitefish sampled at down-
stream sites compared to upstream sites. Whitefish

were not captured at all at the most downstream
sites (Pavan in spring, Popson and Pavan in
summer). In suckers, a similar pattern with higher
cortisol levels measured in fish sampled at more
downstream sites was also observed in the summer,
but not in the spring. It is of interest that plasma
cortisol in suckers was higher (p<0.05) than in
whitefish both in spring and summer at the Ft.
McLeod site, the most upstream site where suckers
were caught. (Summerview site could not be sam-
pled in Spring 2005).

Fig. 3 Plasma AChE
(mean±SE) in whitefish and
suckers sampled at sites
along the Oldman River in a
Spring, and b Summer.
Numbers in the bars indi-
cate the sample size for each
site. Lines under sites rep-
resent sites within the ther-
mal preference of whitefish.
Capital letters represent sig-
nificant differences among
sites for suckers and lower
case letters represent signif-
icant differences among
sites for whitefish (ANOVA
and Tukey-Kramer HSD
test α=0.05). Asterisks rep-
resent significant differen-
ces between species at a site
(Student’s t-test α=0.05).
Sites with only one bar
indicate that only one spe-
cies was caught at that site;
sns, site not sampled
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The concentrations of liver glycogen (Fig. 5) were
significantly lower (p<0.05) in whitefish compared to
suckers at all sites and seasons, except Ft. McLeod in
spring where there were no significant differences
between the two species. Liver glycogen reserves in
both whitefish and suckers decreased along the river
gradient in spring and also in summer.

There were no significant differences in plasma
glucose (Fig. 6) between whitefish and suckers, in
both spring and summer, except at Popson in spring.
Plasma glucose levels in whitefish sampled in the
spring and also the summer were lower at downstream
sites along the river gradient, while in the sucker they
were not significantly different among sites.

Condition factor did not follow a gradient pattern
in either whitefish or suckers (Table 3). The sizes of

the fish sampled (fork lengths and body weights,
Table 3) were similar among sites in summer in both
whitefish and suckers; there were some site differ-
ences in body weights of suckers sampled in spring.

Discussion

The Oldman River exhibits a pronounced elevational
gradient in temperature, with the downstream warmer
reaches impacted by agriculture and flow regulation.
The gradient was used in this study as a model system
for examining the effects of physico-chemical gra-
dients on fish physiology. The distribution of fish
along the river reflects the temperature gradient, as
mainly cold-water species, such as Bull Trout

Fig. 4 Plasma cortisol
(mean±SE) in whitefish and
suckers sampled at sites
along the Oldman River in a
Spring, and b Summer. (See
legend of Fig. 3 for details)
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(Salvelinus confluentus), Westslope Cutthroat Trout
(O. clarki lewisi) and Mountain Whitefish are present
in the upper reaches while cool-water fish such as
suckers, Mooneye (Hidon tergisus Lesueur), Goldeye
(Hiodon alosoides), and Walleye (Stizostedion
vitreum) dominate the lower reaches. With the
increasing intensity of agriculture downstream, con-
centrations of herbicides (2,4-D, Mecoprop) and other
compounds, such as cholesterol or desmosterol
(Koning et al. 2006; Jeffries et al. 2008) increase.
Although OPs and CBs, pesticides with a short half-
life, were not detected in the Oldman River in the
present study, their effects, including AChE inhibition,
may be detected even after a recovery period (Beauvais
et al. 2000) and trace amounts of different OPs and CB
can have an effect on organisms because they act
through a similar mechanism (Scholz et al. 2006).

Differences in AChE were detected, with AChE
activities in whitefish always lower compared to
suckers, at all sites and seasons. Further studies are
needed to determine whether these differences are
related to exposure, through different use of habitat
(Thompson and Davies 1976) or diets (Saint-Jacques
et al. 2000), or a fundamental physiological differ-
ence. Species differences in the magnitude of AChE
inhibition caused by exposure to the same pesticide
have been reported for other fish species (Van Dolah
et al. 1997). Along with differences in AChE
activities related to fish species, small site-related
differences were also observed. The lower AChE
activities in whitefish in spring at downstream sites
may be linked to an increase in pesticide exposure
during a period of intensive pesticide application in
Southern Alberta. Sucker AChE activities, higher than

Fig. 5 Liver glycogen
(mean±SE) in whitefish and
suckers sampled at sites
along the Oldman River in a
Spring, and b Summer. (See
legend of Fig. 3 for details)
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whitefish, were not affected. In the summer, AChE in
both species was however lower at more upstream
sites which were cooler than the downstream sites.
Hogan (1970) described a linear relationship between
AChE activity and temperature in Bluegill, however
we did not detect a significant relationship between
AChE activity and temperature in our study. The
relationship between temperature and pesticide expo-
sure on AChE inhibition needs to be explored in
greater depth, so that this marker of exposure to
pesticides can be validated for use in a wide range of
native fish species and temperature regimes. Ours is a
first set of data for AChE in whitefish and first
seasonal data for sucker.

The present study also provided a first set of data
on confinement-induced plasma cortisol in Mountain
Whitefish. Temperature is a known stressor and can
increase plasma cortisol in fish at water temperatures

outside of the thermal preference (Davis 2004).
Whitefish were not caught at the most downstream
(warmest) sites, and their plasma cortisol levels were
higher at the downstream sites where they were still
present, both in spring and summer. These results
suggest that elevated plasma cortisol may indicate
limits of the distribution of this species. A similar
pattern of plasma cortisol was also detected in the
sucker in summer, with higher levels at the warmest
downstream sites, but not in the spring. Interestingly,
suckers had higher plasma cortisol than whitefish at
Ft. McLeod, the most western and also coldest site
where suckers were caught in the Oldman River.
Temperature below the optimal temperature range is
known to increase plasma cortisol in some fish
species (Davis and Peterson 2006), as temperatures
above this range do. Several studies have shown that
plasma cortisol levels are species-dependent; two

Fig. 6 Plasma glucose
(mean±SE) in whitefish and
suckers sampled at sites
along the Oldman River in a
Spring, and b Summer. (See
legend of Fig. 3 for details)
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species may have different levels of plasma cortisol
when exposed to the same stressor (Lacroix and
Hontela 2004; Jentoft et al. 2005). The largest
species-specific difference in plasma cortisol in this
study was detected at the Pearce Rd. site in the
summer when water temperatures were above the
UPT for whitefish. Even though plasma cortisol
values have not been published for Mountain White-
fish and ours is the first report for confined field
sampled fish, the cortisol and AChE data suggest that
whitefish may be highly vulnerable to the combined
stress effects of pesticides and increased temperature.
Future studies need to characterize the interactive
effects of multiple concurrent stressors such as
temperature, agrichemicals or sampling methods
(seining, confinement) on physiological status, in-
cluding plasma cortisol or AChE activity, in fish
species from systems likely to be impacted by climate
change.

To further characterize the physiological stress
response in whitefish and the sucker, liver glycogen
and plasma glucose were measured. Whitefish had
lower levels of liver glycogen compared to suckers at
all sites and sampling periods, however whether this
differences between species is related to a difference in
sensitivity to temperature, pesticides and/or confine-
ment, or a physiological species difference and a lower

capacity for storage of glycogen in the liver of whitefish
is not known. Species-specific differences in liver
glycogen levels were reported in other fish species
(Krogdahl et al. 2004). In both whitefish and suckers,
liver glycogen reserves decreased along a west-east
gradient, suggesting that the increase of temperature
and/or pesticides may lead to a depletion of glycogen
reserves. Liver glycogen levels have been shown to
decrease when fish are exposed to increased tempera-
ture (Viant et al. 2003) or pesticides (de Aguiar et al.
2004), however the interactions between temperature
and pesticides have not been characterized thus far.

One of the characteristic responses associated with
an increase in plasma cortisol and a decrease of liver
glycogen, is a rise in plasma glucose, the energy
source used to maintain homeostasis (Mommsen et al.
1999). Despite large differences in liver glycogen
between the two species, their plasma glucose con-
centrations were different at only one site (Popson in
spring). Plasma glucose concentrations in whitefish
were lower in fish sampled at the downstream sites in
both spring and summer, while site-related differences
were not detected in the sucker. These results provide
additional physiological evidence that whitefish may
be more vulnerable than suckers to multiple stressors.

Condition factor, often used as an indicator of
overall health, was not affected in whitefish or sucker

Table 3 Condition factor (mean±SE) in whitefish and suckers sampled at sites along the Oldman River in spring and summer

Site

Sampling
period

Species Sum Ft.M Per Pop Pav

Spring Whitefish sns 1.11±0.02(11)B 1.19±0.03(18)A 1.09±0.01(12)B -

Summer Condition 1.13±0.0(18)A 0.99±0.02(15)B 1.06±0.03(12)AB - -

Spring Factor Sucker sns 1.10±0.01(27)AB 1.15±0.14(22)A 1.07±0.2(20)B 0.99±0.08(14)AB

Summer - 1.11±0.02(19)A 1.06±0.02(20)A 1.08±0.02(18)A 1.08±0.02(16)A

Spring Whitefish sns 14.05±1.1(11)B 22.59±0.9(18)A 17.38±1.4(12)B -

Summer Length 20.23±1.6(14)A 19.09±0.9(18)A 21.76±0.9(15)A - -

Spring Sucker sns 11.67±0.5(26)B 14.37±0.4(23)A 14.90±0.7(21)A 9.53±0.5(15)C

Summer - 14.09±0.8(20)A 14.15±0.8(20)A 15.94±0.5(18)A 13.51±0.6(17)A

Spring Whitefish sns 38.30±14.6(11)B 146.92±15.0(18)A 70.65±17.1(12)B -

Summer Weight 95.67±16.4(14)A 78.89±11.3(18)A 119.22±13.7(15)A - -

Spring Sucker sns 21.00±4.0(26)BC 36.09±2.8(23)A 35.33±5.7(21)AB 10.98±3.0(15)C

Summer - 38.5±6.3(20)A 35.18±3.5(20)A 46.63±4.9(18)A 27.19±4.3(17)A

Letters represent significant differences among sites (ANOVA and Tukey-Kramer HSD test α=0.05); sns, site not sampled;
– species not caught during sampling period; Condition factor=weight*100/length3
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sampled in this study. It is difficult to conclude
whether the condition factors were within the normal
range, especially for whitefish (CF=0.99 – 1.19),
because there are limited physiological data for this
species. Swanson et al. (1994) reported a condition
factor of 1.14±0.22 for whitefish at a reference site
while whitefish at two sites exposed to bleached kraft
mill effluent had a condition factor of 1.20±0.18 and
1.07±0.17. Numerous studies reported the condition
factor in suckers, ranging from 1.10 - 1.82 at
reference sites and 1.23 - 1.72 at contaminated sites
(Munkittrick and Dixon, 1988; Swanson et al. 1994).
Although condition factor did not vary along the river
gradient in this study, others have shown that as water
temperatures rise, foraging frequency and durations
decrease (Neill and Magnuson 1974), leading over
time to a decreased condition factor.

Our study reported important species-specific
differences in AChE activities and responses of the
physiological stress axis between whitefish and
suckers, suggesting that whitefish may be at greater
risk if water temperatures and pesticides inputs
continue to increase. The environmental scenario for
which evidence is rapidly accumulating is an increase
in water temperatures, in water withdrawals in
agricultural areas and in pesticide loading of aquatic
systems (Bloomfield et al. 2006). Global climate
change models suggest as water temperatures contin-
ue to increase there may also be a shift in the
distribution of fish with decreases in cold-water
species and the invasion of cool- or warm-water
species (Eaton and Scheller 1996; Daufresne et al.
2003). Use of species sensitivity distributions for
temperature effects, potentially in combination with
other stressors, has been proposed for environmental
risk assessment in Europe and water quality objec-
tives (de Vries et al. 2008). Physiological data
provided by our study could be used, along with data
validated under controlled exposures to specific
stressors in the laboratory or in mesocosms, for
development and application of location- and species –
specific risk assessments. Further monitoring of the
Oldman River and a greater understanding of Mountain
Whitefish physiology are needed to determine how
elevated temperature and agrichemicals influence the
range and stability of whitefish populations, partic-
ularly at downstream river reaches where these
stressors co-occur and interact. These studies are
becoming important as climate changes, and agri-

cultural activities expand and are modified in
response to the climate change.
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