Type Theories from Barendregt’'s Cube for

T heorem Provers

Jonathan P. Seldin
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
jonathan.seldin@uleth.ca
http://home.uleth.ca/~jonathan.seldin

July 11, 2001

Theorem provers here are for verification

Must be trusted. Need

e Consistency

e Confidence in implementation

In some cases, must be small

e Example: Proof Carrying Code

Barendregt’s A\ cube
Syntax: M — x|c|Prop|Type|(MM)|(Ax : M . M)|(Vx : M)M

Prop and Type are sorts. s, s', s; are sorts (It is common to use * for
Prop, O for Type. I formerly referred to sorts as kinds.)

Conversion is g-conversion, M =g N, generated by (M : A. M)N >
[N/x] M

Judgements are of the form I v M : A, where I is

:BliAl,xQZAQ,...,xniAn

T hese systems all have the same axiom:

~ Prop : Type

General Rules

(start) If x ¢ FV(IN)

(weakening) If x & FV(IN)

(application)

r+-M:(Ve:A)B T N:A
- MN :[N/z]B

(abstraction) If x & FV(I")
fre:AF M:B I+ (NVx:A)B:s

Fr=Xe:A.M:(NVx:A)B

(conversion)
r-A:B - B:s B=3B
r - A: B

Specific rules

(ss’ rule) If x & FV(IN)

Fr-A:s Mz:AF B:§
'+ (Vx:A)B:s

/

System depends on possible values of s and s’ in these specific rules

Some examples

e \ — , related to simple type assignment: Both s and s’ must be
Prop

e)\2, related to Second order typed A-calculus: s’ must be Prop

e \P, related to AUT-QE and LF: s must be Prop

e)\w, related to Girard's Fw: If s is Prop, so is s/

e \C, Calculus of constructions: s and s’ can both be either kind

HOL, (Church 1940), which is not in the A-cube, is a subsystem of
MC.

Advantages of these systems

e [hey are all consistent by strong normalization

e All have small number of primitive postulates (easier to trust im-
plementation)

Disadvantage

e All are impredicative

But now many non-logicians have ever heard of predicativity?

Representing logic with equality

Use A — B for (Vxz : A)B if x does not occur free in B

If A:Prop and B : Prop, use A D B for this

If A: Prop and B : Prop, use AA B for (Yw : Prop)((A D B D w) D w)
Terms of type A A B are pairs with projections

If A:Prop and B : Prop use AV B for
(Vw : Prop)((A D w) D ((B D w) D w))

Terms of type AV B are disjoint unions with injections

Define void = 1 = (Vx : Prop)x
If A: Prop, use =A for AD L

If A:Propand z: A + B : Prop, then use (dz : A)B for

(Vw : Prop)((Vx : A)(B — w) — w)

Terms of type (3Ix : A)B are pairs (differently typed from those of
type AN B) with a left projection but (for technical reasons) no right
projection

All this gives us the standard rules for intuitionistic logic

If A:s, M:Aand N : A, use M =4 N for

(Vz: A— Prop)(zM D zN)

This is called Leibniz equality

I am not assuming extensionality for this as S. Berardi does

Boolean type

Bool = (Vu : Prop) (u — u — u)
T=M M Prop.Xx:u.\y:u.x

F=MAu:Prop. Xx:u.dy:u.y

Adding assumptions

To make A an assumption (for A : Prop), add as a new hypothesis
c: A, where c is a constant.

By strong normalization, the underlying system is consistent. There
IS no term M such that + M : L.

However, assuming

c1 : Prop,co i c1,c3 1 —Cq
we get an inconsistency.

A set [of assumptions is consistent if there is no term M such that

' M : L. This is equivalent to: there is no term N such that
[,z :Prop W N :z, where z & FV(IN)..

Goal: Prove certain sets I' of assumptions consistent
Method: Get consistency results in calculus of constructions
Results will hold for entire A-cube and HOL. If a given construct

cannot be typed in a weaker system, the results for calculus of con-
structions will justify certain additional assumptions.

For example, in A — , the assumptions for conjunction would be

e A : Prop — Prop — Prop (here AAB is to be an abbreviation for AAB)

e and.in : Ax : Prop . Ay : Prop . x — y — Axy

e and.left : Az : Prop . Ay : Prop . Axy — x

e and.right : Az : Prop . Ay : Prop . Azy — y

The justification for these assumptions in A — is that they can be
interpreted by terms in the calculus of constructions which can be

proved to satisfy these typings in an environment that has been proved
consistent

Deduction Normalization A deduction of the form
e A+ M:B I'F (WVz:A)B:s

(abstraction)

Fr = Xe:A.M:(Vx:A)B .
(conversion)

r = Xe:A.M:Nx:C)D
r+ (Ax:A.M)N : [N/z]D

' = N:C

(application)

where x € FV(IM,A), A =3 C, and B =3 D, reduces to

- N:.C
re: A M:B I FN:A

' + [N/x]M : [N/z]B
r + [N/x]M : [N/z]D

(conversion)
(substitution lemma)

(conversion)

Strong normalization holds for deductions

Derivation to avoid: Let I be

A : Prop,w : (Vz : A— Prop)(zN),x : Prop
We want to avoid
Fr - w:(z:A—Prop)(zN) T F)\y:A.:a::A—>Prop

Fr- wy:A.x2):(A\y:A.x2)N
- wy:A.x2):x

(application)
(conversion)

A strongly consistent environment (well-formed) is defined to exclude
this. It does not allow any types of the form AAB, AV B, (3x: A)B,
A, —|A, or M:A N.

Every strongly consistent environment is consistent.

There are consistent environments which allow negations of formulas.

Important Result

Let 1 be a well-formed environment in which each type is the nega-
tion of an equation between terms with distinct normal forms, and
let > be strongly consistent. Then if, for B : s and a closed term R,

|_1,|—2 = RIMZBN,
then M=5N.

The proof is to assume a shortest deduction (in normal form) for any
[> and prove that there must be in the deduction an inference from
zM to zN, from which M =3 N follows.

This proves the consistency of 1, > and identifies Leibniz equality
with conversion.

Example: T is bool : = T =g, F and N> is empty

Arithmetic (example of recursive datatype)

Define:

1. N= (VA : Prop)((A— A) - (A— A))

2. 0=XA:Prop. e :A—-A . \y:A.y

3.o0=A MM N. XA :Prop. Xz : A— A . \y: A.x(uAzxy)

Here

n=5)\A:Prop.>\x:A—>A.)\y:A.gj(w(;..(agy)..
n

)

It is possible to define w so that

70 Zﬁ 0
w(on) =g n

Using this =, it is possible to define R so that if A : Prop, M : A, and
N:N—A—- A,
RMNO =53 M
RMN(on) =g Nn(RMNn)

We can prove

= N : Prop
- O0:N
- o :N—N

But what about mathematical induction?

There is a non-numeral in N, namely M : Prop. Az : A— A .x. This
is n-convertible to a numeral, but not g-convertible

n-reduction: If z does not occur free in U : (Vx : A)B

A A. Uxp>U

(I am avoiding n-conversion for technical reasons)

Pfenning and Paulin-Mohring (1989) give an example of a recursive
datatype represented this way in which there is a term in the type
which does not (- or n-convert to anything constructed from the

constructors of the datatype.

We should not expect mathematical induction to hold for N.

To get mathematical induction, define (Dedekind’s definition of nat-
ural number, 1887)

N=X:N.KWA:N—=Prop)((Vvm : N)(Am D A(om)) D A0 D An)

We can prove

= N :N— Prop

= NO

o (Vn:N)(Wn D N(on))

= (VA :N— Prop)((Vm : N)(Am D A(om)) D A0 D
(Vn : N)(Nn D An))

Then, using @ we can prove

= (Vn:N)(Ym i N)(Nn D Nm D on =y om Dn=ym)

Also, using Bool : Prop, T : Bool, and An : N . Az : Bool . F : N — Bool — Boal,
we can define

Iszero = RT(An : N . Az : Bool . F)
Then for n: N, since + Nn,

|szero 0 =3

Iszero (on) =3 F

Hence, we can prove

bool : = T =gy F F (Vn: N)(N D~ on =p0)

T his means that arithmetic in a typed system is consistent

Classical Logic
Add assumption cl : (Vu : Prop)(—= = u D u)

Classical arithmetic can be proved consistent by using a variation of
the ——-translation.

Abstract recursively defined data types

In a recent paper (Seldin, 2000), this is extended to a large class of
abstract recursively defined data types.

(But not all. Only those for which the type of each constructor has
the form

A1 — (A — ...(Ap— D)...)

where D is the type of the database and each A; is either D or is the
type of another such database or is a variable of type Prop.)

Sets as predicates

Huet's (1987) idea:

Let U be any small type: i.e., U : Prop
Then Set;; = U — Prop

If A: Setyy, then z € A is Ax
For P :Prop, {x:U | P}=Xx:U.P
ACB=WNx:U)(xe ADx € B)

A=ex B=(ACB)AN(BCA)

Further definitions:

D={x:U | L}
ANB={xz:U | € ANx € B}
AUB={2:U | z€ AVzx € B}
~A={z:U | —xz € A}
PA=AB :Set;;. BC A

Here, PA : Set;p — Prop

Class;; = Set;y — Prop

Functions

The set of functions from set A to set B is

AM:U—-U.Nz:U)(x€e AD fx e B)

We get much of set theory, but not all:

Seldin (1997) shows that essentially all the axioms of Intuitionistic
Zermelo-Frankel set theory (formulation of Beeson 1985) are provable
except the axioms of power set and &€-induction.

e-induction prevents infinite descending €-chains; here they are pre-
vented by the type structure.

So the important missing axiom is that of power set. We can get any
finite number of power set operations.

Note 1 Representing this part of set theory involves no new assump-
tions, only definitions.

Note 2IfI" H M : A and if I is consistent, then, I',c: A is consistent
(¢ a new constant). Useful if M is large.

If this A is A1 — (A — (... (An — Ap)...)), then the new assumption
represents the derived rule

MliAl MQZAQ oo My Ap
Mle...MnIAO

Conclusion

T his approach leads to

e Ssmall systems

e few assumptions

e provably consistent

e sufficient for a lot of mathematical reasoning

