
Type Theories from Barendregt’s Cube for

Theorem Provers

Jonathan P. Seldin

Department of Mathematics and Computer Science

University of Lethbridge

Lethbridge, Alberta, Canada

jonathan.seldin@uleth.ca

http://home.uleth.ca/∼jonathan.seldin

July 11, 2001

Theorem provers here are for verification

Must be trusted. Need

• Consistency

• Confidence in implementation

In some cases, must be small

• Example: Proof Carrying Code

Barendregt’s λ cube

Syntax: M −→ x|c|Prop|Type|(MM)|(λx : M . M)|(∀x : M)M

Prop and Type are sorts. s, s′, si are sorts (It is common to use * for
Prop, ✷ for Type. I formerly referred to sorts as kinds.)

Conversion is β-conversion, M =β N , generated by (λx : A . M)N ✄

[N/x]M

Judgements are of the form Γ � M : A, where Γ is

x1 : A1, x2 : A2, . . . , xn : An

These systems all have the same axiom:

� Prop : Type

General Rules

(start) If x 	∈ FV (Γ)

Γ � A : s
Γ, x : A � x : A

(weakening) If x 	∈ FV (Γ)

Γ � A : B Γ � C : s
Γ, x : C � A : B

(application)

Γ � M : (∀x : A)B Γ � N : A
Γ � MN : [N/x]B

(abstraction) If x 	∈ FV (Γ)

Γ, x : A � M : B Γ � (∀x : A)B : s
Γ � λx : A . M : (∀x : A)B

(conversion)

Γ � A : B Γ � B′ : s B =β B′

Γ � A : B′

Specific rules

(ss′ rule) If x 	∈ FV (Γ)

Γ � A : s Γ, x : A � B : s′

Γ � (∀x : A)B : s′

System depends on possible values of s and s′ in these specific rules

Some examples

• λ → , related to simple type assignment: Both s and s′ must be
Prop

• λ2, related to Second order typed λ-calculus: s′ must be Prop

• λP , related to AUT-QE and LF: s must be Prop

• λω, related to Girard’s Fω: If s is Prop, so is s′

• λC, Calculus of constructions: s and s′ can both be either kind

HOL, (Church 1940), which is not in the λ-cube, is a subsystem of

λC.

Advantages of these systems

• They are all consistent by strong normalization

• All have small number of primitive postulates (easier to trust im-
plementation)

Disadvantage

• All are impredicative

But now many non-logicians have ever heard of predicativity?

Representing logic with equality

Use A → B for (∀x : A)B if x does not occur free in B

If A : Prop and B : Prop, use A ⊃ B for this

If A : Prop and B : Prop, use A ∧ B for (∀w : Prop)((A ⊃ B ⊃ w) ⊃ w)

Terms of type A ∧ B are pairs with projections

If A : Prop and B : Prop use A ∨ B for

(∀w : Prop)((A ⊃ w) ⊃ ((B ⊃ w) ⊃ w))

Terms of type A ∨ B are disjoint unions with injections

Define void ≡ ⊥ ≡ (∀x : Prop)x

If A : Prop, use ¬A for A ⊃ ⊥

If A : Prop and x : A � B : Prop, then use (∃x : A)B for

(∀w : Prop)((∀x : A)(B → w) → w)

Terms of type (∃x : A)B are pairs (differently typed from those of

type A∧B) with a left projection but (for technical reasons) no right

projection

All this gives us the standard rules for intuitionistic logic

If A : s, M : A and N : A, use M =A N for

(∀z : A → Prop)(zM ⊃ zN)

This is called Leibniz equality

I am not assuming extensionality for this as S. Berardi does

Boolean type

Bool ≡ (∀u : Prop)(u → u → u)

T ≡ λu : Prop . λx : u . λy : u . x

F ≡ λu : Prop . λx : u . λy : u . y

Adding assumptions

To make A an assumption (for A : Prop), add as a new hypothesis
c : A, where c is a constant.

By strong normalization, the underlying system is consistent. There
is no term M such that � M : ⊥.

However, assuming

c1 : Prop, c2 : c1, c3 : ¬c1

we get an inconsistency.

A set Γ of assumptions is consistent if there is no term M such that
Γ � M : ⊥. This is equivalent to: there is no term N such that
Γ, x : Prop � N : x, where x 	∈ FV(Γ)..

Goal: Prove certain sets Γ of assumptions consistent

Method: Get consistency results in calculus of constructions

Results will hold for entire λ-cube and HOL. If a given construct

cannot be typed in a weaker system, the results for calculus of con-

structions will justify certain additional assumptions.

For example, in λ → , the assumptions for conjunction would be

• Λ : Prop → Prop → Prop (here A∧B is to be an abbreviation for ΛAB)

• and.in : λx : Prop . λy : Prop . x → y → Λxy

• and.left : λx : Prop . λy : Prop . Λxy → x

• and.right : λx : Prop . λy : Prop . Λxy → y

The justification for these assumptions in λ → is that they can be
interpreted by terms in the calculus of constructions which can be

proved to satisfy these typings in an environment that has been proved

consistent

Deduction Normalization A deduction of the form

Γ, x : A � M : B Γ � (∀x : A)B : s
Γ � λx : A . M : (∀x : A)B

(abstraction)

Γ � λx : A . M : (∀x : C)D
(conversion)

Γ � N : C
Γ � (λx : A . M)N : [N/x]D

(application)

where x 	∈ FV(Γ, A), A =β C, and B =β D, reduces to

Γ, x : A � M : B
Γ � N : C
Γ � N : A

(conversion)

Γ � [N/x]M : [N/x]B
(substitution lemma)

Γ � [N/x]M : [N/x]D
(conversion)

Strong normalization holds for deductions

Derivation to avoid: Let Γ be

A : Prop, w : (∀z : A → Prop)(zN), x : Prop

We want to avoid

Γ � w : (∀z : A → Prop)(zN)
...

Γ � λy : A . x : A → Prop
Γ � w(λy : A . x) : (λy : A . x)N

(application)

Γ � w(λy : A . x) : x
(conversion)

A strongly consistent environment (well-formed) is defined to exclude
this. It does not allow any types of the form A∧B, A∨B, (∃x : A)B,
⊥, ¬A, or M =A N .

Every strongly consistent environment is consistent.

There are consistent environments which allow negations of formulas.

Important Result

Let Γ1 be a well-formed environment in which each type is the nega-

tion of an equation between terms with distinct normal forms, and

let Γ2 be strongly consistent. Then if, for B : s and a closed term R,

Γ1,Γ2 � R : M =B N,

then M =β N .

The proof is to assume a shortest deduction (in normal form) for any

Γ2 and prove that there must be in the deduction an inference from

zM to zN , from which M =β N follows.

This proves the consistency of Γ1,Γ2 and identifies Leibniz equality

with conversion.

Example: Γ1 is bool : ¬ T =Bool F and Γ2 is empty

Arithmetic (example of recursive datatype)

Define:

1. N ≡ (∀A : Prop)((A → A) → (A → A))

2. 0 ≡ λA : Prop . λx : A → A . λy : A . y

3. σ ≡ λu : N . λA : Prop . λx : A → A . λy : A . x(uAxy)

Here

n =β λA : Prop . λx : A → A . λy : A . x(x(. . . (x
︸ ︷︷ ︸

n

y) . . .))

It is possible to define π so that

π0 =β 0

π(σn) =β n

Using this π, it is possible to define R so that if A : Prop, M : A, and
N : N → A → A,

RMN0 =β M

RMN(σn) =β Nn(RMNn)

We can prove

� N : Prop

� 0 : N

� σ : N → N

But what about mathematical induction?

There is a non-numeral in N, namely λA : Prop . λx : A → A . x. This

is η-convertible to a numeral, but not β-convertible

η-reduction: If x does not occur free in U : (∀x : A)B

λx : A . Ux ✄ U

(I am avoiding η-conversion for technical reasons)

Pfenning and Paulin-Mohring (1989) give an example of a recursive

datatype represented this way in which there is a term in the type

which does not β- or η-convert to anything constructed from the

constructors of the datatype.

We should not expect mathematical induction to hold for N.

To get mathematical induction, define (Dedekind’s definition of nat-
ural number, 1887)

N ≡ λn : N . (∀A : N → Prop)((∀m : N)(Am ⊃ A(σm)) ⊃ A0 ⊃ An)

We can prove

� N : N → Prop

� N0

� (∀n : N)(Nn ⊃ N (σn))

� (∀A : N → Prop)((∀m : N)(Am ⊃ A(σm)) ⊃ A0 ⊃
(∀n : N)(Nn ⊃ An))

Then, using π we can prove

� (∀n : N)(∀m : N)(Nn ⊃ Nm ⊃ σn =N σm ⊃ n =N m)

Also, using Bool : Prop, T : Bool, and λn : N . λx : Bool . F : N → Bool → Bool,

we can define

Iszero ≡ RT(λn : N . λx : Bool . F)

Then for n : N, since � Nn,

Iszero 0 =β T

Iszero (σn) =β F

Hence, we can prove

bool : ¬ T =Bool F � (∀n : N)(N ⊃ ¬ σn =N 0)

This means that arithmetic in a typed system is consistent

Classical Logic

Add assumption cl : (∀u : Prop)(¬ ¬ u ⊃ u)

Classical arithmetic can be proved consistent by using a variation of

the ¬¬-translation.

Abstract recursively defined data types

In a recent paper (Seldin, 2000), this is extended to a large class of

abstract recursively defined data types.

(But not all. Only those for which the type of each constructor has

the form

A1 → (A2 → . . . (An → D) . . .)

where D is the type of the database and each Ai is either D or is the

type of another such database or is a variable of type Prop.)

Sets as predicates

Huet’s (1987) idea:

Let U be any small type: i.e., U : Prop

Then SetU ≡ U → Prop

If A : SetU , then x ∈ A is Ax

For P : Prop, {x : U | P} ≡ λx : U . P

A ⊆ B ≡ (∀x : U)(x ∈ A ⊃ x ∈ B)

A =ex B ≡ (A ⊆ B) ∧ (B ⊆ A)

Further definitions:

∅ ≡ {x : U | ⊥}

A ∩ B ≡ {x : U | x ∈ A ∧ x ∈ B}

A ∪ B ≡ {x : U | x ∈ A ∨ x ∈ B}

∼ A ≡ {x : U | ¬ x ∈ A}

PA ≡ λB : SetU . B ⊆ A

Here, PA : SetU → Prop

ClassU ≡ SetU → Prop

Functions

The set of functions from set A to set B is

λf : U → U . (∀x : U)(x ∈ A ⊃ fx ∈ B)

We get much of set theory, but not all:

Seldin (1997) shows that essentially all the axioms of Intuitionistic

Zermelo-Frankel set theory (formulation of Beeson 1985) are provable

except the axioms of power set and ∈-induction.

∈-induction prevents infinite descending ∈-chains; here they are pre-

vented by the type structure.

So the important missing axiom is that of power set. We can get any

finite number of power set operations.

Note 1 Representing this part of set theory involves no new assump-

tions, only definitions.

Note 2 If Γ � M : A and if Γ is consistent, then, Γ, c : A is consistent

(c a new constant). Useful if M is large.

If this A is A1 → (A2 → (. . . (An → A0) . . .)), then the new assumption

represents the derived rule

M1 : A1 M2 : A2 . . . Mn : An
M1M2 . . . Mn : A0

Conclusion

This approach leads to

• small systems

• few assumptions

• provably consistent

• sufficient for a lot of mathematical reasoning

