
Type Theories from Barendregt’s Cube for
Theorem Provers∗

Jonathan P. Seldin
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

jonathan.seldin@uleth.ca
http://home.uleth.ca/∼jonathan.seldin

November 28, 2001

Abstract
Anybody using a theorem prover or proof assistant will want to

have confidence that the system involved will not permit the deriva-
tion of false results. On some occasions, there is more than usual need
for this confidence. This paper will discuss some logical systems based
on typed lambda-calculus that can be used for this purpose. The sys-
tems are natural deduction systems, and use the propositions-as-types
paradigm. Not only are the underlying systems provably consistent,
but additional unproved assumptions from which a lot of ordinary
mathematics can be derived can also be proved consistent. Finally,
the systems have few primitive postulates that need to be programmed
separately, so that it is easier for a programmer to see whether the
code really does program the systems involved without errors.

Theorem provers and proof assistants are used for a variety of purposes.
For some of these purposes, including many cases of formal verification, these
theorem provers must be trusted. Among the conditions needed for a trusted
system are the following:

∗This work was supported in part by grant RGP-23391-98 from the Natural Sciences
and Engineering Research Council of Canada.

1

• Consistency. It must not be possible to derive a contradiction in the
system.

• Confidence in the implementation. The user must have good reason to
believe that the coding for the implementation really does accurately
program the formal logic involved, and does not accidently include
extra principles.

In some cases, it is also necessary for the theorem prover to be small, for
example in proof carrying code (PCC) [1, 2]. PCC is designed to provide
computer users installing new software evidence that the software is safe: the
software code is to include a formal proof that the software satisfies certain
safety conditions (such as not writing to the wrong memory locations), and
the computer on which the software is installed is to have a theorem prover
that checks this formal proof. In order not to interfere with other computer
operations, the theorem prover needs to be small. In order to provide the
necessary assurance to the user, it must be trusted.

In this paper, we will look at some formal systems that can be used for
theorem provers or proof assistants of this kind.

I would like to thank Roger Hindley for his helpful comments and sug-
gestions.

1 Barendregt’s λ-cube

Definition 1 The λ-cube of Barendregt [3] is a collection of eight systems
of type assignment to λ-calculus. The systems all have the same syntax:

M −→ x|c|Prop|Type|(MM)|(λx : M . M)|(∀x : M)M.

Here Prop and Type are special constants called sorts ; s, s′, and s1, etc., will
be used for sorts.1 Conversion will be β-conversion, generated by

(λx : A . M)N ✄ [N/x]M,

where [N/x]M denotes the substitution of N for all free occurrences of x in
M , with bound variables being changed to avoid conflicts. Judgements are
of the form Γ � M : A, where Γ is

x1 : A1, x2 : A2, . . . , xn : An.

1It is common to use * for Prop, ✷ for Type. I formerly referred to sorts as kinds [21,
22, 23, 24, 25].

2

The systems all have the same axiom, namely

Prop : Type.

They all have the following general rules in common:

(start) If x 	∈ FV (Γ)
Γ � A : s

Γ, x : A � x : A

(weakening) If x 	∈ FV (Γ)

Γ � A : B Γ � C : s
Γ, x : C � A : B

(application)
Γ � M : (∀x : A)B Γ � N : A

Γ � MN : [N/x]B

(abstraction) If x 	∈ FV (Γ)

Γ, x : A � M : B Γ � (∀x : A)B : s

Γ � λx : A . M : (∀x : A)B

(conversion)
Γ � A : B Γ � B′ : s B =β B′

Γ � A : B′

The systems are differentiated by the following specific rules :

(ss′ rule) If x 	∈ FV (Γ)

Γ � A : s Γ, x : A � B : s′

Γ � (∀x : A)B : s′ ,

where the different systems depend on the possible values of s and s′. Here
are some of the specific systems:

• λ → , related to simple type assignment: Both s and s′ must be Prop.

• λ2, related to Second order typed λ-calculus: s′ must be Prop.

• λP , related to AUT-QE and LF: s must be Prop.

3

• λω, related to Girard’s Fω: If s is Prop, so is s′.

• λC, Calculus of constructions: s and s′ can both be either kind.

HOL, which is Church’s simple type theory [9], which is not in the λ-
cube, is a subsystem of λC. λC is the strongest system in the λ-cube; all
the other systems are subsystems of it. Similarly, λ → is a subsystem of all
other systems in the cube.

These systems all have some advantages for the purposes we are consid-
ering in this paper:

• They can all be proved consistent by proving a strong normalization
theorem. The proof of this theorem varies from one system to another;
the proof for stronger systems is a stronger proof than that for weaker
systems. As Gödel’s Second Theorem tells us, each of these proofs uses
means of proof which cannot be formalized in the system involved.

• They all have a small number of primitive postulates, which means
that when they are implemented there are few places for programming
errors to occur.2

They do have one feature which might be considered a disadvantage: they
are impredicative. But all the known predicative systems suffer from the
disadvantage that they have a large number of primitive postulates. It thus
appears that we can have the advantages of a small number of postulates
(with the consequence of a relatively small chance of an error in program-
ming) or else predicativity. My own personal view is that a small number
of primitive postulates is more important than predicativity, especially since
in practice, most clients for such systems will probably never have heard of
predicativity.

The formulation given here is the one given by Barendregt as a Pure
Type System (PTS) [3], and, in the case of the calculus of constructions,
is much closer to the original formulation of Coquand and Huet [11] than
the formulation I used in my previous papers on this subject [21, 22, 23, 24,
25]. The main difference is that before an environment Γ can appear in a

2Compare this to the system Nuprl [10], which has over one hundred primitive postu-
lates, each of which must be programmed separately in implementation.

4

deduction in the formulation given here, it must be proved well-formed by
proving that

Γ � Prop : Type,

whereas in the formulation I formerly used, being well-formed was shown
to be necessary for the discharge of assumptions by conditions on the rules
corresponding to (abstraction) and the (ss′ rule). For

x1 : A1, x2 : A2, . . . , xn : An

to be well-formed means that

• The variable xi does not occur free in A1, A2, . . . , Ai (but it may occur
free in Ai+1, . . . , An), and

• x1 : A1, x2 : A2, . . . xi−1 : Ai−1 � Ai : s for some sort s.

From now on, all environments will be assumed to be well-formed.

2 Representing Logic With Equality

Logic is represented in these typed systems by the propositions-as-types in-
terpretation, which is also known as the Curry-Howard isomorphism. [14].
The idea is that the types are interpretated as formulas or propositions, and
the terms are interpreted as proofs or deductions. It is not hard to see that
deductions in any of these systems using the rules for (application) and (ab-
straction) follow the constructions of the terms involved, and the other rules
play the auxiliary role of determining when these two rules, and especially
the rule for (abstraction), can be legally applied.

The notation A → B is used for the type (∀x : A)B when x does not
occur free in B. As a type, A → B is the type of functions whose arguments
are in type A and whose values are in type B. When A : Prop and B : Prop,
the type A → B will be interpreted as the implication from A to B, and the
notation A ⊃ B will often be used for this. The rule (application) gives us
modus ponens, and the rule (abstraction) gives us implication introduction
in the usual sense of natural deduction.

The other connectives and quantifiers are defined to the extent that they
can be defined in the various systems of the λ-cube:3

3See [22, §6].

5

Definition 2 The connectives and quantifiers are defined as follows:

• If A : Prop and B : Prop, use A∧B for (∀w : Prop)((A ⊃ B ⊃ w) ⊃ w).
The terms of type A ∧ B are pairs with projections, and their types
give us the usual properties of conjunction in natural deduction.

• If A : Prop and B : Prop use A ∨ B for

(∀w : Prop)((A ⊃ w) ⊃ ((B ⊃ w) ⊃ w))

Terms of type A∨B are disjoint unions with injections, and their types
give us the usual properties of disjunction in natural deduction.

• Define void ≡ ⊥ ≡ (∀x : Prop)x. If A : Prop, use ¬A for A ⊃ ⊥. This
gives us the usual properties of intuitionistic negation. Furthermore, it
follows from the strong normalization theorem that there is no closed
term M such that � M : void.

• If A : Prop and x : A � B : Prop, then use (∃x : A)B for

(∀w : Prop)((∀x : A)(B → w) → w).

Terms of type (∃x : A)B are pairs (differently typed from those of
type A ∧ B) with a left projection but (for technical reasons) no right
projection. The types involved give us the usual natural deduction
rules for the existential quantifier.

• If A : s, M : A and N : A, use M =A N for

(∀z : A → Prop)(zM ⊃ zN).

This is called Leibniz equality. It is easy to prove that it satisfies the
reflexive, symmetric, and transitive laws and that equals under this
equality can always be replaced by equals.

With these definitions, we have a higher-order intuitionistic logic.
We can also define a Boolean type:

Bool ≡ (∀u : Prop)(u → u → u),

T ≡ λu : Prop . λx : u . λy : u . x,

F ≡ λu : Prop . λx : u . λy : u . y.

Here T and F have distinct normal forms. The usual truth functions are easy
to define, but none of them are identified with the connectives and quantifiers
defined above.

6

3 Adding Unproved Assumptions

The higher-order intuitionistic logic with equality that we have seen above
is not enough for practical theorem provers and proof assistants. We will
also need to allow for new postulates in the form of unproved assumptions.
Adding such assumptions is easy: to make A an assumption, just add c : A as
a new assumption, where c is a new atomic constant. New atomic constants
can be obtained from variables by simply deciding not to make substitutions
for them. In an implementation, variables and constants are just identifiers
anyway, and any computer implementation allows for any number of those.

However, adding unproved assumptions in this way can cause problems
with consistency. The basic system is consistent, as noted above. However,
it is easy to come up with a set of new assumptions which leads to a contra-
diction:

c1 : Prop, c2 : c1, c3 : ¬c1.

The contradiction that follows from these assumptions does not in any way
negate the consistency that follows from the strong normalization theorem.
Nevertheless, it is important to avoid them in any practical application.

Definition 3 A set Γ of assumptions is consistent if there is no term M
such that Γ � M : ⊥. This is equivalent to: there is no term N such that
Γ, x : Prop � N : x, where x 	∈ FV(Γ).

We now want to prove consistent sets of assumptions that are useful in
practical applications of theorem-proving. The best way to do this is to prove
these consistency results for the strongest system we are considering, namely
the calculus of constructions. The results so obtained will then follow for all
those weaker systems in which the assumptions can be typed. In some weaker
systems, the results can be used to justify assuming new assumptions. For
example, in λ → , our definition of conjunction cannot be typed. However,
we can add a new constant Λ, take A ∧ B as an abbreviation for ΛAB, and
then add the following assumptions:

• Λ : Prop → Prop → Prop.

• and.in : λx : Prop . λy : Prop . x → y → Λxy.

• and.left : λx : Prop . λy : Prop . Λxy → x.

7

• and.right : λx : Prop . λy : Prop . Λxy → y.

The fact that the resulting system can be interpreted in a stronger system
(the calculus of constructions) in which these assumptions are interpreted as
provable results shows that adding them to λ → will not lead to contradic-
tion.

4 The Consistency of Unproved Assumptions

In order to obtain the consistency results we desire, we need to consider
normalizing deductions as well as terms.

Deduction Normalization A deduction of the form

Γ, x : A � M : B Γ � (∀x : A)B : s

Γ � λx : A . M : (∀x : A)B
(abstraction)

Γ � λx : A . M : (∀x : C)D
(conversion)

Γ � N : C

Γ � (λx : A . M)N : [N/x]D
(application)

where x 	∈ FV(Γ, A), A =β C, and B =β D, reduces to

Γ, x : A � M : B
Γ � N : C
Γ � N : A

(conversion)

Γ � [N/x]M : [N/x]B
(substitution lemma)

Γ � [N/x]M : [N/x]D.
(conversion)

The substitution lemma is proved for all systems of the λ-cube in [3, Lemma
5.1.11].

Strong normalization holds for deductions with this reduction relation.
Note that this kind of reduction step is related to the kind of implication

reduction step considered by Prawitz in [20]:

1
[A]
D1

B
A ⊃ B

⊃ I − 1 D2

A
B

⊃ E

D3

C

8

reduces to
D2

A
D1

B
D3

C.

Here, as part of the reduction step, the deduction

D2

A

is placed above all occurrences of A as an undischarged assumption in

A
D1

B.

This part of the reduction step corresponds to the use of the Substitution
Lemma above. But the use of the substitution lemma is more complicated.
This is because in order to make use of an assumption in a deduction, it must
be made the conclusion of the (start) rule, and so, unlike ordinary natural
deduction, the assumption does not occur at a leaf of the tree. In fact, the
only way to make as assumption occur at the top of a branch is to define a
branch to start at the conclusion of an inference by rule (start).

One of the main features of normalized deductions used in [20] is that
if the deduction ends in an elimination rule, then the only inferences which
can occur in the main branch are other inferences by elimination rules, and
so the assumption at the top of the main branch is not discharged. This
form of reasoning applies here as well, provided that we understand that the
assumption at the top of the main branch is on the right side of the conclusion
of an inference by (start). The rules are written here so that the main branch
is always the leftmost branch, so the main branch will sometimes be referred
to as the “left branch.”

There are certain kinds of inferences that we want to avoid in the main
branch of a deduction if we are to have consistency. Let Γ be

A : Prop, w : (∀z : A → Prop)(zN), x : Prop.

9

What we want to avoid is the following:

Γ � w : (∀z : A → Prop)(zN)

...
Γ � λy : A . x : A → Prop

Γ � w(λy : A . x) : (λy : A . x)N
(application)

Γ � w(λy : A . x) : x.
(conversion)

In order to avoid this, we define a class of assumptions that cannot occur
undischarged at the top of the main branch in which such an inference occurs:

Definition 4 Let Γ be an environment of the form

x1 : A1, x2 : A2, . . . , xn : An.

For each i, let Ai convert to

(∀yi1 : Bi1)(∀yi2 : Bi2) . . . (∀yimi
: Bimi

)Si,

where Si, the tail of Ai, does not convert to a term of the form (∀z : C)D.4

Then Γ is strongly consistent if for each Ai for which mi > 0 and Si converts
to ziMi1Mi2 . . . Mil, if zi is a variable, then the tail of its type does not convert
to Prop.

A strongly consistent environment is consistent.
This definition is very weak. A strongly consistent environment cannot

contain any types of the form A∧B, A∨B, ⊥, ¬A, (∃x : A)B, or M =A N .
Although a strongly consistent environment cannot contain negations of

types, there are consistent environments that can. See [22, Definition 27].

Theorem 1 Let Γ1 be a well-formed environment in which each type is the
negation of an equation between terms with distinct normal forms, and let Γ2

be strongly consistent. Then if, for B : s and a closed term R,

Γ1, Γ2 � R : M =B N,

then M =β N .

4It can be shown that every type in a well-formed environment converts a term of this
form.

10

This is [22, Theorem 20]. The idea behind the proof is to show that the
deduction ending in R : M =B N must have the form

Γ1, Γ2, z : B → Prop, u : zM � R1 : zM
...

...

Γ1, Γ2, z : B → Prop, u : zM � R1 : zN
(conversion) ...

Γ1, Γ2, z : B → Prop � λu : zM . R1 : zM ⊃ zN
(abstraction) ...

Γ1, Γ2 � λz : B → Prop . λu : zM . R1 : (∀z : B → Prop)(zM ⊃ zN).
(abstraction)

In this deduction, the inference by (conversion) is only valid if M =∗ N and
R1 is u. In showing that the deduction is of this form, it is necessary to show
in each case that the formula in question cannot be the conclusion of an infer-
ence by (application), and this is shown by reasoning about the assumption
at the top of the main branch if it is: the assumptions z : B → Prop and
u : zM can both be in a strongly consistent environment, and it cannot be
any of those, and if it is in Γ1, then the minor premise would have to have
a conclusion of the form M ′ =B′ N ′, contrary to the hypothesis that we are
dealing with the shortest deduction of that kind.

Note that a consequence of this theorem is the following corollary:

Corollary 1.1 If Γ is a strongly consistent environment, then

Γ, c : ¬(T =Bool F)

is consistent.

Note also that the theorem identifies Leibniz equality with conversion.
S. Berardi [5] assumes that Leibniz equality is extensional in the sense

that, for terms M and N of type (∀x1 : A1)(∀x2 : A2) . . . (∀xm : Am)Prop,

(∀x1 : A1)(∀x2 : A2) . . . (∀xm : Am)(Mx1x2 . . . xm ↔ Nx1x2 . . . xm) ⊃ M =B N,

where B is (∀x1 : A1)(∀x2 : A2) . . . (∀xm : Am)Prop and A ↔ B is (A ⊃
B) ∧ (B ⊃ A). This assumption has unusual consequences when m = 0.
For let A be any inhabited type. Then A is provable. But so is A → A. It
follows from this assumption that A =Prop (A → A) is provable. It follows

from this that A is a model of the untyped λ-calculus, and so any function of
type A → A has a fixed point. Since the type N defined in the next section
is inhabited and since the successor function σ has type N → N, σ has a
fixed point! This is a highly unusual and counterintuitive result, and it is

11

undesirable in small trusted theorem provers and proof assistants. For this
reason, this assumption of extensionality will not be made here.

Classical logic can be obtained by adding the assumption

cl : (∀u : Prop)(¬ ¬ u ⊃ u),

where cl is a new constant. This assumption can be proved consistent with
strongly consistent assumptions plus negations of equations between distinct
normal forms by means of a variation of the double-negation translation.
See [22, Corollary 22.1].

5 Representing Arithmetic

It is standard to represent arithmetic in this system with the following defi-
nitions:

• N ≡ (∀A : Prop)((A → A) → (A → A))

• 0 ≡ λA : Prop . λx : A → A . λy : A . y

• σ ≡ λu : N . λA : Prop . λx : A → A . λy : A . x(uAxy)

Here, N is the type of the natural numbers, 0 is the number zero, and σ is
the successor function. Then a natural number n is represented by

n =β λA : Prop . λx : A → A . λy : A . x(x(. . . (x︸ ︷︷ ︸
n

y) . . .))

It is possible to define π so that

π0 =β 0

π(σn) =β n

Using this π, it is possible to define R so that if A : Prop, M : A, and
N : N → A → A,

RMN0 =β M

RMN(σn) =β Nn(RMNn)

12

We can prove

� N : Prop

� 0 : N

� σ : N → N

This is an example of an inductively defined datatype. This particular
representation is an example of the kind of datatype treated in [8, 6].

We would naturally like to prove mathematical induction for N, which is

(∀A : N → Prop)((∀u : N)(Au ⊃ A(σu)) ⊃ A0 ⊃ (∀x : N)(Ax)),

but there is a major problem about this. It says that every term of type
N is Leibniz equal to a term representing a natural number. However, the
theorem we proved above identifies Leibniz equality with conversion, which
in these systems is β-conversion. But there is a term in type N that does not
β-convert to a term representing a natural number: λA : Prop . λx : A . x.
The term does η-convert to a term representing a natural number, but we
are not using η-conversion here.5 Pfenning and Paulin-Mohring [19] give
an example of a recursive datatype represented this way in which there is
a term in the type which does not β- or η-convert to anything constructed
from the constructors of the datatype. For this reason, it appears that this
form of mathematical induction is false in these systems and that it would
be a mistake to assume it.

Instead, we can get the principle of mathematical induction by using
Dedekind’s definition of the natural numbers [13]:

N ≡ λn : N . (∀A : N → Prop)((∀m : N)(Am ⊃ A(σm)) ⊃ A0 ⊃ An)

We can prove

� N : N → Prop,

� N0,

� (∀n : N)(Nn ⊃ N (σn)),

� (∀A : N → Prop)((∀m : N)(Am ⊃ A(σm)) ⊃ A0 ⊃,

(∀n : N)(Nn ⊃ An)).

5The rule for η-reduction is that λx : A . Ux ✄ U if x is not free in U .

13

Thus, by relativizing the quantifiers to N , we can obtain the use of mathe-
matical induction. Furthermore, we have used only definitions; there are no
new unproved assumptions. Thus, if we are working within an environment
known to be consistent, we retain consistency.

We can extend these results to the other Peano axioms. For example,
using π we can prove

� (∀n : N)(∀m : N)(Nn ⊃ Nm ⊃ σn =N σm ⊃ n =N m).

Also, using Bool : Prop, T : Bool, and λn : N . λx : Bool . F : N → Bool → Bool,
all of which are provable, we can define

Iszero ≡ RT(λn : N . λx : Bool . F)

Then for n : N, since � Nn,

Iszero 0 =β T,

Iszero (σn) =β F.

Hence, we can prove

bool : ¬ T =Bool F � (∀n : N)(Nn ⊃ ¬ σn =N 0).

This means that arithmetic in a typed system is consistent.
In a recent paper [24], this is extended to a large class of abstract recur-

sively defined data types. But not all: only those for which the type of each
constructor has the form

A1 → (A2 → . . . (An → D) . . .)

where D is the type of the database and each Ai is either D or is the type of
another such database or is a variable of type Prop. All of these datatypes
are covariant in the sense of [1]. A method of representing non-covariant
datatypes is given by Appel and McAllester in [2]. I believe that a more
natural method is to extend Dedekind’s definition to arbitrary datatypes by
defining a predicate for any set of constructors which says that an object (of
a suitable type) is an object of the datatype if it satisfies every predicate
which is closed under the constructors.6 To deal with recursive definitions

6As I write this, I have not yet found a general way of writing this predicate, but I
have succeeded for an example which is not covariant.

14

(i.e., definitions of recursive functions), I propose to use the logic to prove
that valid definitions do, indeed, define functions. For the case of definitions
corresponding to primitive recursive functions of natural numbers, I propose
to adapt a proof that primitive recursive definitions define total functions of
natural numbers that was given by Lorenzen [18] and Kalmár [17].7

This approach to inductive definitions, as well as the approach of [1, 2],
has the advantage that it is carried out by making definitions, and not by
adding new rules to the type theory as is done in [12, 26, 7]. When extra
rules are added, there are existential committments that follow from them,
and this means that restrictions must be placed on the rules in advance in
order to avoid inconsistency. When new definitions are used without new
unproved assumptions, there is more flexibility. And with the approach I am
advocating, merely extending Dedekind’s approach to defining the natural
numbers does not, in itself involve any existential committments. The worst
that can happen if a definition is given that does not correspond to a real
inductive structure is that it will be impossible to prove that anything satisfies
the definition, and this causes no problems with consistency. Furthermore,
when the proof of Lorenzen and Kalmár that primitive recursive definitions
define total functions is adapted to this kind of theory, the theorem that
is proved has an existential hypothesis, so this theorem only proves that
something exists if it can be proved that there is an object of the right type
satisfying the inductive definition. With this approach, the logic itself will
take care of these problems, and this, in my opinion, makes the approach
more general than the others.

6 Representing Sets as Predicates

In [15, Chapter 5] and [16], Huet proposed to represent a significant part of
elementary set theory by means of predicates. The idea is to take a type
U : Prop8 as a universe and to define SetU to be U → Prop. Then if A : SetU ,
x ∈ A is just Ax. Furthermore, for P : Prop, the set {x : U |P} is λx : U . P .
In addition, we have the following definitions:

A ⊆ B ≡ (∀x : U)(x ∈ A ⊃ x ∈ B),

7The adaptation of this proof seems to work in the case of the example mentioned in
the preceding footnote.

8The definition will also work if U : Type, but this is not needed here.

15

A =ex B ≡ (A ⊆ B) ∧ (B ⊆ A),

∅ ≡ {x : U | ⊥},
{x} ≡ {y : U |y =U x},

A ∩ B ≡ {x : U | x ∈ A ∧ x ∈ B},
A ∪ B ≡ {x : U | x ∈ A ∨ x ∈ B},
∼ A ≡ {x : U | ¬ x ∈ A},
PA ≡ λB : SetU . B ⊆ A,

ClassU ≡ SetU → Prop.

Note that if A : SetU , then PA : ClassU . Other definitions involving classes
are

⋂
C ≡ {x : U |(∀A : SetU)(CA → x ∈ A)},

⋃
C ≡ {x : U |(∃A : SetU)(CA ∧ x ∈ A)}.

If A, B : SetU , we can represent the collection of functions from A to B by

λf : U → U . (∀x : U)(x ∈ A ⊃ fx ∈ B).

This is a lot of set theory. In [22, Remark 17], it is shown that all the
axioms of the constructive set theory IZF [4, p. 164] except for ∈-induction
and power set are provable in this representation. The axiom of ∈-induction
is the constructive replacement for the axiom of foundation, whose role is to
prevent infinite descending ∈-chains, but here such chains are prevented by
the type structure. So the important axiom that cannot be proved here is
the axiom of power set. But power sets may be taken any finite number of
times, and this is enough for many practical purposes.

7 Conclusion

We have seen that with only two unproved assumptions, namely

c1 : ¬(T =Bool F),(1)

cl : (∀u : Prop)(¬¬u ⊃ u),(2)

we can obtain classical arithmetic and a good deal of set theory. Furthermore,
the combination of these assumptions has been proved consistent. This shows
that we have systems which

16

• are small,

• have few primitive postulates,

• are provably consistent,

• are sufficient for a lot of mathematical reasoning.

These systems should be useful for a number of applications of theorem
proving.

References

[1] Andrew W. Appel and Amy P. Felty. A semantic model of types and
machine instructions for proof-carrying code. In 27th ACM Symposium
on the Principles of Programming Languages, pages 243–253, 2000.

[2] Andrew W. Appel and David McAllester. An indexed model of recursive
types for foundational proof-carrying code. Technical Report TR-629-
00, Princeton University, 2000.

[3] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, pages 117–309. Oxford University Press, 1992.

[4] M. Beeson. Foundations of Constructive Mathematics. Springer, Berlin,
1985.

[5] Stefano Berardi. Type Dependence and Constructive Mathematics. PhD
thesis, Universita di Torino, 1989.

[6] Stefano Berardi. Encoding of data types in pur construction calculus:
a semantic justification. In Gérard Huet and Gordon Plotkin, editors,
Logical Environments, pages 30–60. Cambridge University Press, Cam-
bridge, 1993.

[7] F. Blanqui. The calculus of algebraic and inductive constructions. Tech-
nical report, DEA Sémantique, preuve et Programmation, 1998.

[8] C. Böhm and A. Berarducci. Automatic synthesis of typed Λ-programs
on term algebras. Theoretical Computer Science, 39(2–3):135–154, 1985.

17

[9] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[10] R. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[11] Thierry Coquand and Gérard Huet. The calculus of constructions. In-
formation and Computation, 76:95–120, 1988.

[12] Thierry Coquand and Christine Paulin. Inductively defined types. In
P. Martin-Löf and G. Mints, editors, COLOG-88: Proceedings of the
International Conference on Computer Logic held in Tallinn, December
12–16, 1988, volume 417 of Springer Lecture Notes in Computer Science,
pages 50–66, 1990.

[13] Richard Dedekind. Was sind und was sollen die Zahen? Friedr. Vieweg
& Sohn, Braunschweig, 10th edition, 1965. 1st edition, 1887.

[14] W. A. Howard. The formulae-as-types notion of construction. In
J. Roger Hindley and Jonathan P. Seldin, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
479–490. Academic Press, New York, 1980. A version of this paper was
privately circulated in 1969.

[15] Gérard Huet. Formal structures for computation and deduction. Course
Notes, Carnegie-Mellon University, First Edition, May 1986.

[16] Gérard Huet. Induction principles formalized in the calculus of con-
structions. In Hartmut Ehrig, Robert Kowalski, Giorgio Levi, and Ugo
Montanari, editors, TAPSOFT ’87: Proceedings of the International
Joint Conference on Theory and Practice of Software Development,
Pisa, Italy, March 23–27, 1987. Volume 1: Advanced Seminar on Foun-
dations of Innovative Software Development I and Colloquium on Trees
in Algebra and Programming (CAAP ’87), volume 249 of Lecture Notes
in Computer Science, pages 276–286, Berlin, 1987. Springer-Verlag.

[17] László Kalmár. On the possibility of definition by recursion. Acta Szeged,
9(4):227–232, 1940.

[18] Paul Lorenzen. Die Definition durch vollständige Induktion. Monatsch.
Math. u. Phys., 47:356–358, 1939.

18

[19] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types
in the calculus of constructions. In M. Main, A. Melton, M. Mislove,
and D. Schmidt, editors, Mathematical Foundations of Programming
Semantics: 5th International Conference, Tulane University, New Or-
leans, Louisiana, USA, March 29–April 1, 1989, Proceedings, volume
442 of Lecture Notes in Computer Science, pages 209–228. Springer-
Verlag, 1989.

[20] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm,
Göteborg, and Uppsala, 1965.

[21] Jonathan P. Seldin. Coquand’s calculus of constructions: a mathemati-
cal foundation for a proof development system. Formal Aspects of Com-
puting, 4:425–441, 1992.

[22] Jonathan P. Seldin. On the proof theory of Coquand’s calculus of con-
structions. Annals of Pure and Applied Logic, 83:23–101, 1997.

[23] Jonathan P. Seldin. A Gentzen-style sequent calculus of constructions
with expansion rules. Theoretical Computer Science, 243:199–215, 2000.

[24] Jonathan P. Seldin. On lists and other abstract data types in the calculus
of constructions. Mathematical Structures in Computer Science, 10:261–
276, 2000. Special issue in honor of J. Lambek.

[25] Jonathan P. Seldin. Extensional set equality in the calculus of construc-
tions. Journal of Logic and Computation, 11(3):483–493, 2001. Pre-
sented at Festival Workshop in Foundations and Computations held at
Heriot-Watt University, Edinburgh, 16-18 July, 2000.

[26] Benjamin Werner. Une Théorie des Constructions Inductives. PhD
thesis, Université Paris 7, 1994.

19

