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To many students of beginning algebra, it must appear t h a t
algebra is just a matter of formal manipulations.  But this is
not true.  As Middlemiss (1953) points out in the Preface,
solving an equation f(x) = g(x) to get x  = a is equivalent t o
proving

if f(x) = g(x), then x =  a.

Furthermore, checking that f(a) = g(a) is equivalent to p r o v -
ing the converse.

For the benefit of students just beginning to study alge-
bra, this can be done without symbols:
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PROBLEM.  Five more than three times a number is
twenty; find the number.

Solution .  Suppose that there is a number such that

three times the number plus five is twenty.

Then, subtracting five from both “sides”,

three times the number is fifteen.

Hence,
the number is five.

This proves:  if five more than three times a number is
twenty, then the number is five.

Checking, we see that five more than three times five is,
indeed, twenty.

Doing some algebraic problems this way may be helpful
to students who have trouble with the algebraic symbolism;
for a discussion of some of the problems involved in teaching
algebra see Herscovics (1989).

All this shows that algebra is not really about the use of
symbols at all.  Algebra really differs from arithmetic in t w o
important ways:

I.  In algebra, we use reasoning to solve problems indi-
rectly when we cannot solve them directly.

II.  We are concerned with  general properties of n u m -
bers as well as particular problems (and we use reasoning t o
prove these properties).

However, the reasoning used in mathematics is not  t h e
same as in other fields.  Reasoning in mathematics is m o r e
like the reasoning used among the sophists, as discussed b y
DeLong (1970) pp. 9-10:
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…  We do know that there existed a class of teach-
ers who came to be known as sophists.  These
sophists would travel, much like wandering m i n -
strels, and for a fee would teach their s tudents
how to speak persuasively on many different
kinds of topics.  Sophists were also prepared t o
defeat any opponent in a public argument.  The
competitiveness of such a spectacle must h a v e
been very keen and the arguments often dramatic,
so that we can understand why the arrival of a n
important sophist in town was the occasion of
much excitement and why sophists were of ten
able to command large fees.

Protagoras, often considered to be the g rea t -
est of the sophists, would no doubt be thought a
great thinker if his works had survived.  He is b e s t
known for his saying that “man is the measure of
all things” and his humanism probably exhibited
itself in ways we consider uniquely modern.  The
following ancient story about him, although p roba -
bly apocryphal, indicates the kind of verbal p y -
rotechnics of which the sophists were capable.
Protagoras had contracted to teach Euathlus
rhetoric so that he could become a lawyer.  Euath-
lus initially paid only half of the large fee, a n d
they agreed that the second installment should b e
paid after Euathlus had won his first case in court.
Euathlus, however, delayed going into practice for
quite some time.  Protagoras, worrying about h is
reputation as well as wanting the money, decided
to sue.  In court Protagoras argued to the jury:

Euathlus maintains he should not pay me but this is a b -
surd.  For suppose he wins this case.  Since this is h i s
maiden appearance in court he then ought to pay me b e -
cause he won his first case.  On the other hand, suppose
he loses the case.  Then he ought to pay me by the j u d g -
ment of the court.  Since he must either win or lose t h e
case he must pay me.
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Euathlus had been a good student and was able t o
answer Protagoras’ argument with a similar one of
his own:

Protagoras maintains that I should pay him but it is t h i s
which is absurd.  For suppose he wins this case.  Since I
will not have won my first case I do not need to pay h i m
according to our agreement.  On the other hand, suppose
he loses the case.  Then I do not have to pay him by j u d g -
ment of the court.  Since he must either win or lose t h e
case I do not have to pay him.

At this point, DeLong has the following footnote:

I have altered this story in inessential ways in o r -
der to bring out its logical form.  For those who a r e
interested in looking up the original story, s e e
[Rolfe (1927) pp.] 404ff.

Imagine this case in a modern courtroom!

On the other hand, we use arguments like this in m a t h -
ematics all the time.  Thus, even if this story is not histori-
cally valid, it is a good illustration of the differences be tween
reasoning in mathematics and reasoning in other areas.

Another difference between reasoning in mathematics
and reasoning in other fields is that in mathematics we a r e
interested in proofs of results which are intuitively obvious.
This interest also goes back to the ancient Greeks, as Erik
Stenius (1978) points on pp. 258-259:

This means that if “giving a proof” just m e a n s
“proving what is not obvious from what is obvious”
we may doubt that the Greek mathematicians w e r e
the first to prove theorems; but what seems v e r y
certain is that the Greek [sic] were the first to a s k
for proofs of “obvious” facts.  So I state:  The cer-
tainly original and revolutionizing idea of t h e
Greek geometers was the endeavor to find proofs
of “obvious” facts.
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The difference between proving the nonobvi-
ous by means of the obvious and proving the obvi-
ous can be illustrated by the proof of the tr i-angle
theorem.  The Pythagoreans used the wel l -known
diagram (Fig. 1), which is found in many t ex t -
books today.  Now, when we have drawn the line
DCE parallel to AB  (taking “being parallel” in t h e
etymological sense of “lying side by side” r a t h e r
than in the Euclidean sense of “not intersecting”)
the theorem becomes obvious from the figure, if i t
is only “seen” in the right way.  For obviously t h e
alternate angles A  and ACD  are equal, and likewise
the alternate angles B  and BCE .  If we then see DCE,
on the one hand, as the sum of the three angles
ACD, ACB and BCE, and on the other hand as t h e
sum of two right angles, then the theorem becomes
“obvious”.

D
C

E

Α B

Fig. 1

But if we try to find a proof for the fact t h a t
the alternate angles mentioned are  equal, then th is
special instance of proving the obvious happens t o
meet with difficulties which, as any mathematician
knows, 2000 years later were to overthrow t h e
whole conception of Euclidean geometry as stat ing
“mathematical facts”.

Another example of this kind of proof (of the non-obvi-
ous from the obvious, which involves “seeing” a diagram t h e
right way) comes from Plato’s Meno , where Socrates uses t h e
following diagram to show that the area of a square whose
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side is the diagonal of another square has twice the area of
the other square.

 

Yet another example is the following proof of t h e
Pythagorean theorem:
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I have heard this proof referred to as the “retiling proof” of
the theorem.

According to Toretti (1978), p. 3, shortly after the t ime
of Thales (c. 639—546 B. C.), the Greeks developed a new k ind
of proof in which the understanding did not come from a d i a -
gram but from an understanding of the meaning of the t e r m s
used.  These were the first deductive proofs in mathematics.
It is generally agreed that the oldest existing piece of deduc-
tive mathematics is preserved in Propositions 21—34 of Book
IX of Euclid’s Elements, which are based on the definitions
(especially Definitions 6 and 7) of Book VII.  A diagram is
given for each of these proofs  (see, e.g., Heath (1956)), b u t
that diagram is not the basis for understanding the proof.  To
understand the proof it is necessary to understand t h e
meaning of the words used and to reflect on this meaning.
As Toretti (1978) points out (p. 3):

Had they not adopted this method of exact, force-
ful, yet unintuitive thinking, Greek mathematicians
could never have found out that there are incom-
mensurable magnitudes, such as, for example,
pairs of linear segments which cannot both be i n -
tegral multiples of the same unit segment, n o
matter how small you choose this [i.e., unit] to be.

Toretti then goes on to quote B. L. van der Waerden (1961), p.
144:

When we deal with line segments which one sees
and which one measures empirically, it has n o
sense to ask whether they have or not a common
measure; a hair’s breadth will fit an integral n u m -
ber of times into every line that is drawn.  The
question of commensurability makes sense only
for line segments which are objects of thought.
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(This is an important point about mathematics that needs t o
be explained to beginning students.)

Yet the Greeks did find out that there are incommensu-
rable magnitudes.  This discovery is generally believed t o
have been made by Pythagoras or his followers.  As Heath
(1981) p. 91 puts it:

The actual method by which the Pythagore-
ans proved the fact that √2 is incommensurable
with 1 was doubtless that indicated by Aristotle, a
reductio ad absurdum showing that, if the diagonal
of a square is commensurable with its side, it will
follow that the same number is both odd and even.
[Here is a footnote referring to Aristotle, Prior A n -
alytics i.23, 41 a 26l-27.]  This is evidently t h e
proof interpolated in the texts of Euclid as X. 117,
which is in substance as follows:

Suppose AC, the diagonal of a square, to b e
commensurable with AB, its side; let α : β be the i r
ratio expressed in the smallest possible numbers.

Then α  > β, and therefore α  is necessarily > 1.
Now AC2:AB2 = α2:β2;

and, since AC2 = 2AB2,  α 2 = 2β2.
Hence α 2, and therefore α  is even.
Since α : β is in its lowest terms, it follows

that β  must be odd .
Let α  = 2γ; therefore 4γ2 = 2β2, or 2γ2 = β2, so

that β2, and therefore β , is even .
But β was also odd: which is impossible.
Therefore the diagonal AC cannot be com-

mensurable with the side AB .

Note that although this proof could have been presented w i th
a diagram of a square and its diagonal (as it is in Heath
(1956), vol. III, p. 2), the diagram would add nothing to o u r
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understanding.  The principal way it is distinguished from t h e
propositions in Book IX of Euclid is that it is an indirect proof.

How can we explain this transformation in Greek m a t h -
ematics from a visual, intuitive approach to an abstract a p -
proach based on understanding the meanings of terms a n d
reasoning about them?  Our explanation should, if possible,
give some indication of why it was the Greeks rather t h a n
some other people who carried out this transformation.  I t
would also be useful if it gives us material that we can use t o
help explain to students what mathematics is all about.

We might begin by noting that the Greeks loved a rgu -
ments, as DeLong (1970) points out in the story about P ro-
tagoras and Euathlus mentioned above.  Furthermore, unl ike
most of the earlier ancient societies, they had no all-powerful
class of priests.  Thus, there were no positions that they w e r e
not prepared to question.

But this love of argument for its own sake is probably
not enough to explain this change in Greek mathematics.  For
the change is more than just a change in the way truths a r e
discovered.  It also represents a change from a practical ac -
tivity to a purely reflective one.  The mathematics known
from Egyptian and Babylonian sources was all closely associ-
ated with such practical activities as land surveying and a r -
chitecture.  It is only with the Greeks that it became a theo-
retical study without practical value, about which we can
have a story such as that about Euclid given in Heath (1981),
vol. I, p. 25:

The other story is that of a pupil who began
to learn geometry with Euclid and asked, when h e
had learnt one proposition, ‘What advantage shall I
get by learning these things?’  And Euclid called
the slave and said, ‘Give him sixpence, since h e
must needs gain by what he learns.’
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Now since all but fragments of pre-Euclidean Greek
mathematics have been lost, we cannot be completely certain
about the reason for this change in Greek mathematics.  But
there are a number of theories.

One of the theories is due to Arpád Szabó, of the Hun-
garian Academy of Sciences.  In his (1978), he puts forward
the view that this change is the result of influences from o u t -
side mathematics, and, in particular, from the Eleatic school of
philosophy.  This was the school of Parmenides (early 5 t h
century B.C.) and his student Zeno (c. 490—c. 430 B.C.).  The
latter is known for his paradoxes of motion.

Szabó gives a description of the Eleatic philosophy in h is
(1978), pp. 217—218:

Their philosophy is distinguished by its r e -
jection of practical empirical knowledge and of
sense perception in general.  Parmenides e m p h a -
sizes that truth cannot be grasped by means of
sense perception, which is misleading, but only b e
[sic.] reason (λóγω).  To get a clear of idea of w h a t
he means by ‘reason’, let us take a look at one of
his arguments; it asserts that what is (τò ò'ν) can-
not have come into being  and runs as follows:
Suppose that what is did come into being, then i t
could only have come from what is or from what is
not; there is no third possibility.  Now if it h a d
come from what is, it would already have b e e n
existent before it came into being; hence to s a y
that it came into being in this way would make n o
sense.  If, on the other hand, the claim is m a d e
that what is came from what is not, this leads
immediately to a contradiction.  What is can n e v e r
have been the opposite of itself, what is not, a n d
hence could not have come into being in this w a y
either.
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It is apparent that indirect arguments p layed
a very important part in Eleatic philosophy.  With-
out them it would not have been possible to e s t ab -
lish such central doctrines as that there is no m o -
tion, no change, no becoming, no perishing, n o
space  and no time.   Of course, these doctrines con-
tradict the evidence of our senses and are incom-
patible with empiricism, nonetheless the Eleatics,
bolstered by their belief that reason was the only
guide to truth, accepted them.  Furthermore, t h e
whole of Eleatic dialectic is nothing but an inge-
nious application of the method of indirect proof,
which is why Aristotle considered Zeno to be t h e
inventor of dialectic.  …  However, there is no rea l
difference between Zeno’s dialectic and the a rgu -
ments of Parmenides.  The most noteworthy f ea -
ture of both is their use of indirect proof.

As I remarked above, I believe that the i n -
fluence of Eleatic philosophy was responsible for
the rejection of empiricism and visual evidence i n
Greek mathematics, as well as for the introduction
of indirect proof.

Szabó’s theory is that mathematics became a theoretical
study as a result of an attempt to make the subject accept-
able to the Eleatic philosophers.  This involved difficulties,
since these philosophers rejected multiplicity (which is
clearly necessary for arithmetic) and space (which is neces-
sary for geometry).  According to Szabó, arithmetic was m a d e
acceptable to these philosophers by defining the unit in e s -
sentially the same way as Parmenides had defined what is
and then presenting the other numbers as a new kind of
multiplicity that does not occur in the world of the senses.
They then tried  formulating geometry as a purely theoret i -
cal, deductive science, but they never quite succeeded i n
making it acceptable to the Eleatics.  This, according to Szabó,
is why geometry eventually became a separate science.
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Unfortunately, as Toretti (1978) says (p. 375, note 5),
Szabó’s arguments are “not altogether convincing.”  For exam-
ple, Szabó argues that the theory of incommensurability (i.e.,
of irrational magnitudes) presented in Book X of Euclid’s Ele-
ments  must have been completed before the time of Plato b e -
cause in his dialogues Plato uses the technical terms involved
in a way which indicates that they were well known to h is
audience.  But Plato lived past his 80th birthday, from 4 2 8
B.C. to 347 B.C., and that is long enough for these technical
terms to have become known to his audience during t h e
course of his lifetime, or even of a part of it.  H. B. Curry,
whose student I was, had lived past his 62nd birthday w h e n
P. J. Cohen introduced the term “forcing” in his proof of t h e
independence of the continuum hypothesis, yet long before
the end of his life (at the age of 81) he was able to use th is
term before an audience of mathematical logicians and s e t
theorists and assume that the audience would completely u n -
derstand his meaning.

An alternative theory, which appears much more con-
vincing, can be found in Knorr (1975).  (This theory is real ly
later than Szabó’s, since Szabó (1978) is a translation from a
book published in German in 1969.)  According to this theory,
the transition to a theoretical discipline occurred as a part of
the study of incommensurability.  Knorr argues for this thesis
by presenting a reconstruction of how this theory might h a v e
developed.

Knorr begins with the arithmetic of the la te r
Pythagoreans in the fifth century B.C.  He claims that the d i a -
grams used in this study were rows of pebbles, so that t h e
theorems on odd and even numbers in Book IX, Propositions
21-34 of Euclid’s Elements can be regarded as being based o n
seeing diagrams properly.  For example, consider the follow-
ing diagram for Proposition 21:
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Compare this diagram with the text from Heath (1956):

PROPOSITION 21.

If as many even numbers as we please b e
added together, the whole is even.

For let as many even numbers as we please,
AB, BC, CD, DE, be added together; I say that t h e
whole AE  is even.

For, since each of the numbers AB, BC, CD, DE
is even, it has a half part; [VII. Def. 6]
so that the whole AE  also has a half part.

But an even number is that which is divisible
into two equal parts; [id.]
therefore AE  is even.

Q. E. D.

Note how much more Knorr’s diagram contributes to the u n -
derstanding of this proof than the diagram given with t h e
proposition in Heath (1956).

Another example is Proposition 22.  Here are the t w o
diagrams given by Knorr:



1 6 5

   

Now consider the text from Heath (1957):

PROPOSITION 22.

If as many odd numbers as we please b e
added together, and their multitude be even, t h e
whole will be even.

For let as many odd numbers as we please,
AB, BC, CD, CE, even in multitude, be added t o -
gether;
I say that the whole AE  is even.
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For, since each of the numbers AB, BC, CD, DE
is odd, if an unit be subtracted from each, each of
the remainders will be even; [VII. Def. 7]
so that the sum of them will be even. [IX. 21]

But the multitude of the units is also even.
Therefore the whole AE  is even. [IX. 21]

Q. E. D.

Note that an important part of understanding these
proofs by seeing the diagrams the right way is unders tanding
that the conclusions are valid not only for the specific d i a -
grams provided, but for any diagrams which satisfy the h y -
potheses of the propositions.

To study the properties of square numbers, pebbles
were arranged in squares.  The results which can be p roved
this way include that the square of an even number is even,
and is, in fact, a multiple of four.  Consider this diagram:

Once it becomes that we can use essentially the same diagram
for the square of any even number, the result is established.
Similarly, the following diagram can be used to prove that t h e
square of any odd number is odd and is also one more than a
multiple of four:
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In fact, once realize that no matter what odd number is u s e d
on each side, the four blocks in the corners are each a rec tan-
gle in which one side is one more than the other, we see t h a t
each of these blocks is even, so we can reach the s t ronger
conclusion that the square of any odd number is one m o r e
than a multiple of eight.

These results on squares can easily be proved alge-
braically:  (2n)2 = 4n2 and (2n  + 1)2 = 4n (n +1) + 1.  Note t h a t
since one of n  and n + 1 is even, their product is even.

If we apply these results to the problem of finding
triples of integers which can serve as the legs and h y -
poteneuse of right triangles in the light of the Pythagorean
theorem, we come quickly to the following conclusions:

1.  If the hypoteneuse is even, so are both legs.

2.  If the hypoteneuse is odd, then one leg is even a n d
the other is odd.

The key to these results is that it is impossible for t h e
sum of two odd squares to be a multiple of four.  Alge-
braically, we can see this as follows:  

(8n + 1) + (8m  + 1) = 4(2n + 2m) + 2.
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Knorr suggests that the discovery of the incommensu-
rability of the side and diagonal of a square occurred w h e n
these results were applied to the practical problem of finding
the ratio of a diagonal of a square to its side, or, w h a t
amounts to the same thing, the ratio of the hypoteneuse of a n
isosceles right triangle to a leg.  This attempt leads to a puz -
zle.  For if the hypoteneuse is even, then so are both legs, a n d
so we can bisect two sides and obtain a new right isosceles
right triangle half the size of the original one.  We can r epea t
this process each time we get an isosceles right triangle w i th
an even hypoteneuse.  Hence, if we start with a given isosce-
les right triangle and repeat this process, we must eventual ly
get an isosceles right triangle with an odd hypoteneuse.  For
this triangle, one leg must be even and the other odd.  But
since the triangle is isosceles, the legs are equal, and so w e
must conclude that an even number is equal to an odd n u m -
ber, which is impossible.  This puzzle was resolved when i t
was realized that the argument constituted an indirect proof
that the diagonal and side of a square have no common m e a -
sure.  Note that there is no way to understand this indirect
proof by “seeing” a diagram the right way.  According t o
Knorr, it was at this point that indirect proofs and proofs t h a t
depend on understanding the meaning of the terms involved
and reasoning about them were introduced into Greek m a t h -
ematics.  (According to Knorr, this happened about 430 B.C.
This is too late for the introduction of indirect proofs to h a v e
come directly from the Eleatics, but they may have b e e n
taken from other philosophers and thus indirectly from t h e
Eleatics.)

It is tempting to think that this discovery caused a m a -
jor crisis in mathematics and philosophy, for the Pythagore-
ans had assumed that everything in the universe could b e
represented in terms of (whole) numbers.  Furthermore, i n
mathematics itself, ratio was defined for numbers, so t h e
general theory of similar figures was shown to be without a
proper foundation.  But this is not what happened.  Mathe-
maticians and philosophers continued as before; in particular,
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geometers continued to use the theory of similar figures.
(This is just what happened at the beginning of this cen tury
when paradoxes were discovered in the foundations of s e t
theory; most mathematicians continued to use set theory a s
though nothing had happened.)  It appears that the only
lasting change in mathematics caused by this discovery w a s
the introduction of proofs by contradiction and proofs t h a t
involved abstract reasoning rather than seeing diagrams.

According to Knorr, the next development occurred
when Theodorus of Cyrene (active from 410 to 390 B.C.) d e -
cided to study incommensurability.  Knorr proposes a recon-
struction of how he might have been able to prove the i n -
commensurability with a unit of the sides of squares of a r e a
3, 5, 6, 7, 8, 10, 11, 12, 13, 14, and 15; this reconstruction
does not use any more geometry or number theory than w a s
involved in the proof that the diagonal of a square is incom-
mensurable with its side.  The method of proof used by Knorr
fails for a square of area 17 (because 17 is, like any square of
an odd number, one more than a multiple of 8).  

This reconstruction makes it plausible that Plato’s d i a -
logue Theaetetus  can be interpreted as representing the h i s -
tory of the development of this mathematical theory.  In t h e
dialogue, which is set in 399 B.C., Theodorus’ pupil Theaetetus
(414—369 B.C.) recounts a lecture by Theodorus present ing
the above theory, and stating that Theodorus stopped at 17.
(Knorr maintains that the text should be read to mean t h a t
Theodorus ran into trouble at 17.)  The dialogue goes on t o
have Theaetetus assert that  (in effect) the square root of e v -
ery integer which is not a perfect square is irrational.  Knorr
reconstructs how Theaetetus (along with Archytas of Taren-
tum, active after 390 B.C.) managed to prove this result; t h e
proof required developments in both number theory and g e -
ometry.  Furthermore, since the number theory was being
applied to geometry, numbers began to be represented b y
line segments instead of the pebble diagrams.  (Knorr says
that this began in the time of Theodorus.)  This effectively
disguised the fact that the proofs had originally been “seen”
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to be correct by looking at diagrams, but by this time m a t h -
ematics was already largely a theoretical discipline.

One of the developments attributed to Theaetetus was a
definition of ratio and proportion for incommensurable m a g -
nitudes.  (According to Knorr, Theodorus did not have such a
definition and did not need it.  Knorr refers to the the theory
as a theory of proportion, but Fowler (1979) says that it w a s
really a theory of ratio.  The word “ratio” is not defined in Eu-
clid.)  This is not the theory of Book V of Euclid’s Elements,
but an earlier theory of which we no longer have any con-
temporary manuscripts, and hence it has had to be recon-
structed by historical detective work.

Theaetetus worked at Plato’s Academy in Athens.  Af ter
he died, Eudoxus (395—340 B.C.) joined the Academy and t h e
mathematicians working there.  By this time, according t o
Knorr, Plato was pushing the mathematicians to put the i r
theories in what we would call an axiomatic form, in which all
the theorems used in proofs (except, of course, for the basic
axioms, postulates, and definitions) is rigorously proved.  Ac-
cording to Knorr, Eudoxus decided to prove a result which
had previously been taken for granted, namely that if
A :C  = B :C  then A  = B .  This proof turned out to be extremely
difficult in terms of the definition of ratio introduced b y
Theaetetus.  Thus, when Eudoxus found that he could u s e
what we know as Definition 5 of Book V of Euclid’s Elements
(which is a definition of proportion, not ratio) to give a s im-
pler proof of the same result, he was able to replace
Theaetetus’ theory of ratio with a simpler theory.  Eventually,
Theaetetus’ theory was all but forgotten.

This historical reconstruction by Knorr shows m a t h e -
matics becoming a theoretical discipline involving an a x -
iomatic approach as the result of the mathematical (not origi-
nally philosophical) demands of the main theory being s t u d -
ied at the time, namely incommensurability.  Furthermore,
the above summary of the reconstruction down to the indi-
rect proof of the incommensurability of the side and diagonal
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of a square can easily be presented to beginning algebra s t u -
dents .

This suggests some changes in a beginning algebra
course.  I propose beginning with the example without s y m -
bols from the beginning of this paper (or one like it) to m a k e
the point that algebra differs from arithmetic in using r e a -
soning to solve problems indirectly and prove general results.
I would then do elementary area formulas using diagrams.
The formula for the area of a rectangle can be made plausible
by counting squares; I would start with rectangles whose
sides are whole numbers, and then do rectangles with sides
involving rational fractions by changing the size of the unit.
(I would leave out any mention of irrational sides at th is
stage.)  The formula for the area of a parallelogram can b e
justified by the following diagram:

Similarly, the following diagram will justify the formula for
triangles:

The Pythagorean Theorem can then be proved by the d i a -
grams given earlier in this paper.  It is then possible to u s e



1 7 2

the pebble diagrams to prove elementary facts about e v e n
and odd numbers, and to get to the facts about Pythagorean
triples and Knorr’s version of the proof of the incommensura-
bility of the diagonal and side of a square.

At this point, I would take time to criticize the ear l ier
treatment of rectangles with rational sides.  The object would
be to develop an awareness that there are cases that are n o t
covered by that treatment.  Other subjects involve criticism
of previous work in early courses, and I think mathematics
courses would benefit from the same thing.

After this, I would proceed with the use of algebraic
notation to solve simple equations and the rest of the t r ad i -
tional curriculum.

Later in the course, it might be worth taking up t h e
question of the area of a circle.  I would approach the resul t
in the form Archimedes proved it, namely, that the area of a
circle is equal to the area of a triangle whose base equals t h e
circumference of the circle and whose altitude equals the r a -
dius.  (See Heath (1897), p. 91ff.)  I would introduce the fol-
lowing diagram:
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This diagram shows a circle with one square inscribed a n d
another circumscribed.  Each square is made up of four t r i an -
gles whose bases form the perimeter and whose third points
are the center of the circle.  If one looks at this diagram long
enough, one will see that the area of each square is equal t o
the area of a triangle whose altitude is the altitude of any one
of the four triangles and whose base is the perimeter.  In t h e
case of the inscribed square, the perimeter is less than t h e
circumference and the altitude is less than the radius; in t h e
case of the circumscribed circle, the perimeter is greater t h a n
the circumference and the altitude equals the radius.  If w e
double the number of sides of the inscribed and circum-
scribed polygons, the inequalities mentioned above are p r e -
served, as is the formula for the area of the polygon.  Also,
the perimeters and areas are clearly closer to each other.  So
if we think of continuing to double the number of sides, w e
must be narrowing in on the area of the circle.  This m a k e s
Archimedes’ theorem extremely plausible.  However, t h e
problem of really nailing down a proof involves the concept
of a limit, and so a discussion of this problem can help p r e -
pare the way for more advanced courses.
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