
On the relation between Church-style typing
and Curry-style typing∗

Jonathan P. Seldin
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

jonathan.seldin@uleth.ca
http://www.cs.uleth.ca/∼seldin

September 5, 2008

Abstract

There are two versions of type assignment in λ-calculus: Church-
style, in which the type of each variable is fixed, and Curry-style (also
called “domain free”), in which it is not. As an example, in Church-
style typing, λx : A . x is the identity function on type A, and it has
type A → A but not B → B for a type B different from A. In Curry-
style typing, λx . x is a general identity function with type C → C for
every type C.

In this paper, I will show how to interpret in a Curry-style system
every Pure Type System (PTS) in the Church-style without losing any
typing information. I will also prove a kind of comservative extension
result for this interpretation, a result which implies that for most
consistent PTSs of the Church-style, the corresponding Curry-style
system is consistent. (This generalizes some unpublished work with
Garrel Pottinger.) I will then show how to interpret in a system of the

∗This work was supported in part by a grant from the Natural Sciences and Engineering
Research Council of Canada. Some of the work in this paper was joint work with Garrel
Pottinger.

1

Church-style (a modified PTS, stronger than a PTS) every PTS-like
system in the Curry style.

Keywords: Church-style typing, Curry-style typing, domain-full
typing, domain-free typing

1 Introduction

There are two main styles of type theory in λ-calculus: the Church-style, in
which each abstraction indicates the type of the variable, as in

λx : A . M,

and the Curry-style, in which no such type is given:

λx . M.

These two styles of typing are often called the domain-full and the domain-
free styles respectively. These styles are compared and discussed in [2].

Remark 1 Barthe and Sørensen [2] distinguish between domain-free sys-
tems, which they regard as Church-style systems with the types of the bound
variables omitted, and what they think of as the Curry view, in which typ-
ing rules assign types to terms that already exist in the pure λ-calculus. In
this they are following Barendregt [1, Definition 4.1.7], who identifies as the
Curry-version of λ2 a system in which the rules for ∀ are given as follows:

(∀-elimination) Γ ` M : (∀α . σ)

Γ ` M : [τ/α]σ

(∀-introduction) Γ ` M : σ
Γ ` M : (∀α . σ)

Condition:
α 6∈ FV(Γ).

But these two rules seem to me to be closer to the ideas of the intersection
type systems than to any of the systems that interested Curry. As should
be clear from [5, Chapter 14], Curry was basically interested in the system
usually called λ→ , and the basic characteristic of his version is that λx . x
in λ-calculus and I in a system of combinators can have any type of the form
α→ α, which Curry wrote Fαα. This is what Curry called functionality. He

2

also suggested what he called generalized functionality, in which the constant
F was replaced by G, where Gαβ is the type we now write (Πx : α . βx). I
treated a basic form of generalized functionality in Curry’s style in my paper
[14]. On the other hand, Church’s typing is probably best exemplified by his
simple type theory of [4], which is characterized by the presence of the type
of each bound variable, as in λxα . M . Hence, to be historically accurate, I
think it is better to identify the Curry-style with domain-free type systems.

In a Curry-style system, there are terms like λy . yy that have no types.
But there is a sense in which this is also true in a Church-style system:
λy : A . yy is a perfectly good pseudoterm of a Church-style system, but it
will not have a type in many of the usual systems. Perhaps the vocabulary
used may disguise the similarity here: a pseudoterm in a Church-style system
corresponds to a term in a Curry-style system.

There is one standard interpretation of a Church-style system in a corre-
sponding Curry-style system: The function Erase, which simply deletes the
domains from a formula, so that

Erase(λx : A . M) ≡ λx . M.

(The formal definition of Erase is given in Remark 4 below.) Erase has been
used estensively to relate Church-style systems and Curry-style systems. For
example, Erase and modifications of Erase are used by Steffen van Bakel
et al [16] to compare Church-style PTSs (which they call typed systems)
and Curry-style PTSs (which they call type assignment systems). But using
Erase to interpret a Church-style PTS in a Curry-style PTS causes some type
information to be lost. One might think that this information can be restored
from the type (Πx : A . B) of an abstraction term (λx . M) by mapping this
to (λx : A . B). But as is shown in [16, Example 3.5, Theorem 3.6], this is
too simple and may not work properly for some systems.

In this paper, I propose to show how to interpret a system of each style in
an appropriate system of the other without this kind of loss of typing infor-
mation. In one direction, the direction from Church-style to Curry-style, the
interpretation is defined by allowing an abstraction of the form (λx : A . M)
to be an abbreviation for a term of the Curry-style PTS, so the information
about the type of the bound variable in the λ-abstraction is not lost. This
interpretation extends previous work with Garrel Pottinger [13],1 which car-
ried through the interpretation for three systems from the Barendregt cube:

1But the reader will not need knowledge ot [13] to understand the present paper.

3

λ →, λ2, λC, and its extension, the system ECC of Luo [8, 9]. The Curry-
style PTS into which the Church-style system is interpreted is, in general,
stronger than the Church-style PTS interpreted in it; for one thing, the term
interpreting (λx : A . M) β-reduces to (λx . M), and this does not corre-
spond to any feature of the Church-style PTS. However, it is not too much
stronger, and to show this I prove a kind of conservative extension result for
the Curry-style system over the Church-style system, a result from which it
follows that for most consistent PTSs of the Church-style, the corresponding
Curry-style system is also consistent.

In the other direction, the Church-style system into which the Curry-
style PTS is interpreted is not a PTS, but is obtained from a PTS by the
addition of a rule. The idea here is to provide a dummy type A to be the
“domain” of a Curry-style abstraction term (λx . M), so that the Church-
style abstraction which interprets this Curry-style abstraction is (λx : A . M).
This dummy type A does not have any sort as its type, so it can only play a
very limited role in the Church-style system, but to make the interpretation
work a rule is must be added to the Church-style PTS to allow an inference
from Γ ` (λx : B . M) : (Πx : B . C) to Γ ` (λx : A . M) : (Πx : B . C).
This rule corresponds in a sense to the fact that in the Curry-style system,
the term interpreting λx : B . M β-reduces to (λx . M).

I would like to thank Martin Bunder, Roger Hindley, Garrel Pottinger,
and the anonymous referees for their helpful comments and suggestions.

2 Basic definitions

I will assume that the reader is familiar with the basic definitions and nota-
tion of [1] and [7]. The systems considered in this paper are defined from the
pure syntax for pseudoterms

M −→ x|c|MM |λx : M . M |(Πx : M . M),

for a Church-style system or from the pure syntax for terms

M −→ x|c|MM |λx . M |(Πx : M . M)

for a Curry-style system. The reduction we consider will be β-reduction. For
a Church-style system a β-contraction will be

(βCh) (λx : A . M)N �Ch [N/x]M ,

4

whereas for a Curry-style system, it will be

(βCu) (λx . M)N �Cu [N/x]M .

Remark 2 It is relatively easy to add η-reductions. For the Church-style
syntax, this is done by adding the following contractions:

(ηCh) (λx : A . Mx) �ηCh M provided that x 6∈ FV(M).

For the Curry-style syntax, this is the following:

(ηCu) (λx . Mx) �ηCu M provided that x 6∈ FV(M).

For the Curry-style syntax, doing this causes no problems, but for the Church-
style syntax, the Church-Rosser Theorem fails, as the following example due
to Nederpelt [10, p. 71] shows: Let x, y, and z be distinct variables. Then

λx : y . (λx : z . x)x �βCh
λx : y . x

and
λx : y . (λx : z . x)x �η λx : z . x,

and the terms λx : y . x and λx : z . x are distinct terms in normal form.
There are some systems in the Church-style in which the Church-Rosser

Theorem does hold for βη-reduction, as proved for so-called “functional”
PTSs by Herman Geuvers in [6]. But the result does not hold for all PTSs.

For this reason, β-reduction is usually treated separately from βη-reduction
in work on typed λ-calculi, and they will be treated separately in this paper
as well.

A pseudo-context is a finite, ordered sequence x1 : A1, x2 : A2, . . . , xn : An,
where the variables x1, x2, . . . xn are all distinct. Typing judgements will all
have the form

Γ ` M : A,

which says that M : A, where M and A are pseudoterms (or terms in a
Curry-style system), can be derived from the pseudocontext Γ by the typing
rules of the system; in this case, M and A are called legal expressions or legal
terms and Γ is a legal context.

5

Definition 1 A pure type system, or PTS is determined by a specification,
which consists of a triple S = (S,A,R) where

1. S is a set of constants called sorts ;

2. A is a set of axioms of the form

c : s,

where c is a constant and s is a sort;

3. R is a set of rules of the form

(s1, s2, s3),

where s1, s2, s3 ∈ S. A rule of the form (s1, s2, s2) is often written
(s1, s2).

The typing rules for a Church-style PTS, λS = λ(S,A,R) are as follows:

(axiom) ` c : s Condition: c : s ∈ A;

(start) Γ ` A : s
Γ, x : A ` x : A

Condition: s ∈ S and
x 6∈ FV(Γ);

(weak) Γ ` M : B Γ ` A : s
Γ, x : A ` M : B

Condition: s ∈ S and
x 6∈ FV(Γ);

(prod) Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A . B) : s3

Condition:
(s1, s2, s3) ∈ R;

(appl) Γ ` M : (Πx : A . B) Γ ` N : A

Γ ` MN : [N/x]B
;

(abstrCh) Γ, x : A ` M : B Γ ` (Πx : A . B) : s

Γ ` (λx : A . M) : (Πx : A . B)
Condition: s ∈ S;

(conv) Γ ` M : B Γ ` B′ : s B =β B′

Γ ` M : B′
Condition: s ∈ S.

6

The typing rules for a Curry-style PTS, CS = C(S,A,R), are the same
except that the rule (abstrCh) is replaced by

(abstrCu) Γ, x : A ` M : B Γ ` (Πx : A . B) : s

Γ ` (λx . M) : (Πx : A . B)
Condition: s ∈ S.

Remark 3 It is not hard to see from this definition that if a variable x occurs
on the right of a provable statement of the form Γ ` M : A, then x is one
of the variables to which a type is assigned in Γ. It follows that if a term
λx : A . M is assigned a type by a provable statement, then x 6∈ FV(A). From
now on we will assume that in any term of the form λx : A . M , x 6∈ FV(A).

We will need the following sharpened form of the Generation Lemma,
which is proved in [3, Lemma 3.7]:

Lemma 1 If Γ ` M : A, then one of the following conditions holds:

1. M is a constant c, in which case (c : A) ∈ A (in which case A is a
sort), or there is a pseudoterm A′ such that A′ =β A and (c : A′) ∈ A
and there is a sort s such that Γ ` A : s.

2. M is a variable x, in which case x : A is in Γ or there is a pseudoterm
A′ such that A′ =β A and x : A′ is in Γ and there is a sort s such that
Γ ` A : s.

3. M ≡ (Πx : B . C), in which case there are sorts s1, s2, s3 such that
Γ ` B : s1 and Γ, x : B ` C : s2, and (s1, s2, s3) ∈ R and either
A ≡ s3 or A =β s3 or there is a sort s such that Γ ` A : s.

4. M ≡ (λx : B . N), in which case there are a pseudoterm C and a
sort s3 such that Γ ` (Πx : B . C) : s3 and Γ, x : B ` N : C and
A ≡ (Πx : B . C) or else A =β (Πx : B . C) and there is a sort s such
that Γ ` A : s.

5. M ≡ PQ, in which case there are pseudoterms B and C such that
Γ ` P : (Πx : B . C) and Γ ` Q : B and either A ≡ [N/x]C or else
A =β [N/x]C and there is a sort s such that Γ ` A : s.

7

In each case the derivations of judgements of the form Γ ` R : D have
shorter length than that of Γ ` M : A, where the length of a derivation is
the total number of steps in the derivation. (The two steps Γ, x : B ` C : s2

in 3 and Γ, x : B ` M : C in 4 may not have shorter derivations.)

Remark 4 Note that the formal definition of Erase is by induction on the
structure of the pseudoterms of the Church-style syntax as follows:

1. If x is a variable, then Erase(x) ≡ x.

2. If c is a constant, then Erase(c) ≡ c.

3. Erase(MN) ≡ (Erase(M)Erase(N)).

4. Erase(λx : A . M) ≡ (λx . Erase(M)).

5. Erase(Πx : A . B) ≡ (Πx : Erase(A) . Erase(B)).

Luo’s extended calculus of constructions, ECC, is the PTS determined by
the following sets:

S = {?} ∪ {2n : n a nonnegative integer}
A = {? : 20} ∪ {2n : 2n+1 : n a nonnegative integer}
R = {(?, ?, ?), (?, ?, 2n), (2n, ?, ?), (2n, ?, 2m) : 0 ≤ n ≤ m}

∪{(?,2n, 2m) : n ≤ m} ∪ {(2n, 2m, 2r) : 0 ≤ n ≤ r and 0 ≤ m ≤ r}.

3 Church-style to Curry-style

The basic idea of this interpretation is due to Garrel Pottinger [11, §9], who
proposed using a constant Label so that in the Curry-style syntax

(λx : A . M)

is an abbreviation for
LabelA(λx . M).

By the analogy with (βCh), we will want

LabelA(λx . M)N �Cu [N/x]M.

8

This suggests that Label should have the reduction rule

LabelXY Z � Y Z,

as proposed by Pottinger in [11, §9].2 This would suggest, in turn, that we
define Label to be λxyz . yz. However, the second argument of Label will
always be replaced by an abstraction term when we use it, and this will give
us

(λxyz . yz)A(λx . M) �β λz . (λx . M)z

�β λz . [z/x]M

�α λx . M.

Thus, Label can be defined by

Label ≡ λxy . y. (1)

With this definition, we can define a function to interpret the Church-style
syntax in Curry-style syntax as follows:

Definition 2 The function −Cu from the Church-style syntax to the Curry-
style syntax is defined as follows by induction on the structure of the pseu-
doterms of the Church-style syntax:

1. If x is a variable, xCu ≡ x,

2. If c is a constant, cCu ≡ c,

3. (MN)Cu ≡ MCuNCu,

4. (λx : A . M)Cu ≡ LabelACu(λx . MCu), where Label is defined by (1),

5. (Πx : A . B)Cu ≡ (Πx : ACu . BCu).

The following lemmas are easily proved by induction:

Lemma 2 For every pseudoterm of the Church-style syntax, FV(MCu) =
FV(M).

2Pottinger used “φ” for “Label”.

9

Lemma 3 For pseudoterms M and N of the Church-style syntax,
([N/x]M)Cu ≡ [NCu/x]MCu.

Lemma 4 If
M =βCh

N

then
MCu =βCu

NCu.

For a pseudocontext

Γ ≡ x1 : A1, x2 : A2, . . . , xn : An

define
ΓCu ≡ x1 : ACu

1 , x2 : ACu
2 , . . . , xn : ACu

n .

In order to make use of Label, it will be necessary for it to have a type.
As is clear from the proof of Theorem 1, we will need the type for Label when
we have sorts s1 and s2 and a context Γ such that

Γ ` A : s1 and Γ ` (Πx : A . B) : s2. (2)

The typing it requires two stages:

1. Typing λy . y. The type of λy . y will have to be obtained as the
conclusion of the rule (abstrCu), and we will want to deduce

Γ ` (λy . y) : (Πx : A . B)→ (Πx : A . B) (3)

Let us call sorts s1 and s2 for which when we have (2) we also have (3)
I-complete sorts.

In order to deduce (3) by (abstrCu), we will need a sort s3 for which
there is a rule in S of the form (s2, s2, s3), and we will have

Γ ` (Πx : A . B)→ (Πx : A . B) : s3. (4)

If the rules are all of the form (s, s′) as in the Barendregt λ-cube,
then we will need to have the rule (s2, s2) ∈ R, and we will have
s3 ≡ s2. If the PTS in question is singly sorted ([1, Definition 5.2.19]),
so that the unicity of types property holds ([1, Lemma 5.2.21]), then it
is impossible for (Πx : A . B) to have more than one sort as a type, and

10

these conditions are necessary and sufficient for the sorts s1 and s2 to be
I-complete. If the PTS is not singly sorted, so that the unicity of types
property does not hold, then these conditions will only be sufficient,
and may not be necessary. The systems of the λ-cube, which are singly
sorted, the PTSs in which both ? and 2 are I-complete are λ→ , λω,
λω, λPω, and λC. In the PTS ECC, which is not in the λ-cube, all
sorts are I-complete. (Note that ECC is not singly sorted.)

2. Typing λxy . y. To finish, we will need to deduce

Γ ` Label : (Πu : s1 . (Πx : u . B)→ (Πx : u . B)). (5)

This will have to be the conclusion of an inference by (abstrCu) whose
premises are

Γ, u : s1 ` (λy . y) : (Πx : u . B)→ (Πx : u . B)

and
Γ ` (Πu : s1 . (Πx : u . B)→ (Πx : u . B)) : s4

for some sorts s4 and s5 for which (s5, s3, s4) ∈ R and s1 : s5 ∈ A. The
first of these premises will hold in any PTS for which the sorts involved
are I-complete, but not necessarily otherwise. Also, there will clearly
not be sorts s4 and s5 satisfying the second premise if s1 is a topsort,
a sort s for which there is no other sort s′ such that s : s′ ∈ A. And
even if s1 is not a topsort, in which case there will be an s5 such that
s1 : s5 ∈ A, there may be no s4 for which there is a rule (s5, s3, s4) ∈ R.
Let us call a sort s1 of a pair s1, s2 of I-complete sorts for which there
are sorts s4 and s5 for which the second premise holds whenever (2)
holds and s1 : s5 ∈ A a Label-complete sort. clearly, if a sort is a
topsort, then the sort is not Label-complete.

If sorts s1 and s2 are I-complete and the sort s1 is Label-complete, then
it is possible to deduce (5) when (2) hold.

Note that if all rules in R have the form (s, s′), then we will have
s3 ≡ s2, and what we will need for sorts s1 and s2 to be I-complete and
s1 to be Label-complete is (s5, s2) ∈ R. This will give us s4 ≡ s2.

Since 2 is a topsort in every system of the λ-cube, it is not Label-
complete for any of those PTSs. Of the PTSs of the λ-cube for which
both ? and 2 are I-complete, those in which the sort ? is Label-complete
are λω and λC. In ECC, every sort is Label-complete.

11

For sorts of PTSs which are not Label-complete, we will need to arrange
for Label to be usable by adding a rule:

Label Γ ` A : s1 Γ ` (Πx : A . B) : s2

Γ ` LabelA : ((Πx : A . B)→ (Πx : A . B))
Condition: s1, s2 ∈
S and either s1 and
s2 are not I-complete
or they are I-complete
but s1 is not Label-
complete.

Definition 3 Given a PTS λS ≡ λ(Sλ,Aλ,Rλ) in the Church-style, let CS
be defined from λS by replacing rule (abstrCh) by rule (abstrCu) and adding
Rule Label above.

Note that rule Label is not needed if λS is ECC. The corresonding system
CS is just obtained by replacing rule (abstrCh) by rule (abstrCu).

By the above argument, we have

Lemma 5 In every PTS of the Curry-style CS, if (2) hold, then

Γ ` LabelA : ((Πx : A . B)→ (Πx : A . B)). (6)

Remark 5 In a PTS of the Curry-style for which not all pairs of sorts are
I-complete, the Subject-Reduction Theorem does not hold, since (6) holds
but

LabelA ≡ (λxy . y)A �β (λy . y)

and (3) does not hold. If every pair of sorts of CS is I-complete, then the
Subject-Reduction Theorem does hold.

Remark 6 In some PTSs, it may be the case that in addition to (6) it is
possible to deduce

Γ ` LabelC((Πx : A . B)→ (Πx : A . B)), (7)

where C differs from A, and may even be in a different sort. For example, it
is possible to derive in the Curry-style version of → C

` (λxy . y) : N→ ((N→ N)→ (N→ N)),

12

where3

N ≡ (Πu : ? . (u→ u)→ (u→ u));

and from this follows

` LabelN : ((N →N)→ (N →N)).

But this is an example of (7) instead of (6); an example of (6) would have to
be

` Label(N →N) : ((N →N)→ (N →N)).

Let us call a derivation in a Curry-style PTS Church compatible if no
formula of the form (7) occurs in it. By starting at the bottom of a proof
and at each step replacing the deduction of (7) by a deduction of (6), it is
possible to prove the following lemma.

Lemma 6 Every derivation in a Curry-style PTS can be converted into a
Church compatible derivation with the same premises and conclusion.

Now we can prove the main “soundness” theorem of this interpretation.

Theorem 1 If
Γ ` M : A (8)

holds in λS, then
ΓCu ` MCu : ACu (9)

holds in CS.

Proof By induction on the derivation of (8). The interesting case is for
(abstrCh): in this case, Γ ` M : A is the conclusion of an inference by
(abstrCh), so M ≡ λx : B . N and A ≡ (Πx : B . C), and the premises are

Γ, x : B ` N : C, and Γ ` (Πx : B . C) : s

in λS for some s ∈ S. By the second of these and Lemma 1, there is a sort
s1 such that, in λS,

Γ ` B : s1.

By the induction hypothesis, we have in CS

ΓCu ` BCu : s1,

3See [15, §9] to see the role of N in interpreting arithmetic in → C.

13

and we also have in CS

ΓCu, x : BCu ` NCu : CCu and ΓCu ` (Πx : BCu . CCu) : s.

By the last two of these and rule (abstrCu), we have

ΓCu ` (λx . NCu) : (Πx : BCu . CCu).

in CS. Since we also have

ΓCu ` BCu : s1,

we have, by Lemma 5,

ΓCu ` LabelBCu : (Πx : BCu . CCu)→ (Πx : BCu . CCu),

and by (appl) we get

ΓCu ` LabelBCu(λx . NCu) : (Πx : BCu . CCu),

which is the desired conclusion.

Remark 7 The last step of the first part of the proof shows that if

Γ ` (λx . M) : (Πx : A . B) (10)

in CS, then
Γ ` LabelA(λx . M) : (Πx : A . B) (11)

is also derivable in CS.
Note that if every pair of sorts in CS is I-complete, then there is an

inference from (11) to (10) by the Subject-Reduction Theorem [2, Theorem
17], since

LabelA(λx . M) �Cu (λuvw . vw)A(λx . M)

�Cu λw . (λx . M)w

�Cu λw . [w/x]M

�Cu λx . M.

This means that in CS, (10) and (11) are equivalent in these systems.

14

Remark 8 One might ask why it is not possible to ensure the typing of
Label by adding sorts to S and rules to R in defining CS from λS. The
answer is that it is possible, but in general it would make CS much stronger
than λS, and in many cases it would make CS inconsistent in the sense that
every type is inhabited. The systems of the λ-cube that would be interpreted
in inconsistent Curry-style systems this way are λP2, λω, λPω, and λC, all
of which are interpreted in systems that include λU of [1, Definition 5.5.1]
and λω, which is interpreted in a system containing λU− of [1, after the
proof of Theorem 5.5.26]. The following theorem, which is something of a
conservative extension result, shows that for most PTSs, if λS is consistent,
then so is CS.

Theorem 2 If
ΓCu ` MCu : B (12)

in CS, then there is a term A in the Church-style syntax such that B =β ACu

and
Γ ` M : A (13)

in λS. Furthermore, if
ΓCu ` B : s (14)

in CS for some s ∈ S, then there is a term in the Church-style syntax such
that B =β ACu and

Γ ` A : s (15)

in λS.

Proof By induction on the proof of (12) or (14). By Lemma 6, we may
assume that the derivation of (12) or (14) is Church compatible. The last
rule of (12) or (14) cannot be (abstrCu), since its conclusion does not have
the right form. The interesting case is that for rule (appl), in which case
MCu ≡ N1N2. By Definition 2, there are two subcases.

Subcase 1. MCu ≡ LabelCCu(λx . NCu). Then by the assumption that
the derivation of (12) or (14) is Church compatible, B ≡ (Πx : CCu . D).
Then by Lemma 5, (12) must be derived from

ΓCu, x : CCu ` NCu : D, (16)

where x 6∈ FV(ΓCu), and

ΓCu ` (Πx : CCu . D) : s, (17)

15

where s ∈ S. By (16) and the induction hypothesis, there is E such that
D ≡ ECu and

Γ, x : C ` N : E (18)

holds in λS. Also,

(Πx : CCu . D) =β (Πx : CCu . ECu) =β (Πx : C . E)Cu ≡ B,

so that if A ≡ (Πx : C . E), then B ≡ ACu. By (17) and the induction
hypothesis,

Γ ` (Πx : C . E) : s (19)

holds in λS. By (18), (19), and rule (applCh), in λS,

Γ ` (λx : C . N) : (Πx : C . E)

or
Γ ` (λx : C . N) : A. (20)

Since (λx : C . N)Cu ≡ LabelCCu(λx . NCu) ≡ M , (20) is (13).
Subcase 2. MCu ≡ MCu

1 MCu
2 , and the premises for the inference by (appl)

in CS are
ΓCu ` MCu

1 : (Πx : D . F) (21)

and
ΓCu ` MCu

2 : D, (22)

where B ≡ [M2/x]F . By (22) and the induction hypothesis, there is G such
that D =β GCu and

Γ ` M2 : G (23)

in λS. By (21) and (conv),

ΓCu ` MCu
1 : (Πx : GCu . F),

so by the induction hypothesis there is H such that HCu =β (Πx : GCu . F).
It follows by Definition 4 that there is K such that F =β KCu and

Γ ` M1 : (Πx : G . K) (24)

in λS. If we set A ≡ [M2/x]K, then B =β ACu and by (appl)

Γ ` M : [M2/x]K

16

in λS, which is (13).

Let us call a PTS topsort grounded if, whenever s is a topsort, it is
inhabited by another sort: i.e., if whenever s ∈ S is a topsort then there is
s′ ∈ S such that (s′, s) ∈ A. Every PTS of the λ-cube is toposrt grounded,
as is ECC (vacuously).

Note that by Lemma 1, if Γ ` M : A in any PTS, then either Γ ` A : s
for some s ∈ S or else A converts to a topsort.

Corollary 1 If λS is topsort grounded and consistent, then CS is consistent.

Proof The proof will be by contraposition. Note that since λS is topsort
grounded, then every topsort in λS is inhabited. Assume that CS is incon-
sistent. We need to prove that every type which does not convert to a topsort
is inhabited. Since CS is inconsistent, every type of CS is inhabited, so, in
particular, for every sort s ∈ S, there is a closed type M such that

` M : (Πx : s . x)

in CS. By Lemma 6, we may assume that the derivation is Church compat-
ible. Starting with the bottom of this derivation, for every subdeduction of
the form

Γ ` (λy . P) : (Πx : A . B) (25)

whose conclusion is not the minor premise for an inference by (appl) whose
conclusion is

Γ ` LabelA(λy . P) : (Πx : A . B), (26)

use Lemma 5 to expand the subproof to a proof of (26). When this process
is completed, the result will be proof in CS of

` NCu : (Πx : s . x).

By Theorem 2 and the fact that (Πx : s . x)Cu ≡ (Πx : s . x), it follows that
there is a proof in λS of

` N : (Πx : s . x).

From this and rule (appl), it follows that in λS,

y : s ` Ny : y.

17

Hence, if C is any type in s,

` NC : C,

which proves that every type in s is inhabited. Now every type in λS which
is not convertible to a topsort is in some sort, so this proves that every type
which is not convertible to a topsort is inhabited, which proves that λS is
inconsistent.

It appears that for topsort grounded PTSs, the main difference between
λS and CS is that in the latter, it is possible to derive

Γ ` (λx : A . M) : (Πx : B . C)

where B 6=β A, whereas this is not possible in λS.

Remark 9 If subtyping is present, LabelA(λx . M) is, in a sense, a restric-
tion of (λx . M) to the type A as domain, and (λx . M) is a kind of universal
function, whose domain consists of all possible values N of x which have
a type that allows [N/x]M to be typed. The equivalence of (10) and (11)
means that if all pairs of sorts are I-complete, Curry-style typing identifies
functions with their restrictions. At first this might seem surprising, but if
we stop to think about it, I think it makes sense: λ-calculus involves uni-
form definitions of functions as rules. In Church-style typing, the domain in
an abstraction is given explicitly in the abstraction term; it is the type A
in λx : A . M . However, in Curry-style typing, no such domain is given in
λx . M . In a Church-style PTS with subtyping, the specification of the do-
main A in (λx : A . M) can represent a restriction of a function as a distinct
term not convertible to (λx : B . M) for a type B which is not convertible to
A, but there is no way to use the Curry-style syntax to represent a restriction
this way.

Remark 10 If we can find a way to add η-reduction to a Church-style system
with subtyping without losing the Church-Rosser Theorem, then we will have
a Church-style system in which functions cannot be distinguished from their
restrictions; see [7, Remark 13.77]. For suppose B is a subtype of C, and
suppose that within a certain context, M : C →D. Then the subtyping
relation gives us

(λu : B . u) : (B → C),

18

so that if x 6∈ FV(M),

(λx : B . M((λu : B . u)x))

represents the restriction of M to domain type B. Now we have by (βCh),

(λx : B . M((λu : B . u)x)) � (λx : B . Mx),

so (λx : B . Mx) also represents the restriction of M to domain type B.
But if we then apply a contraction by (ηCh), we contract (λx : B . Mx) to
M , thus identifying M with its restriction. Thus, to have a system with
subtyping in which functions can be distinguished from their restrictions, it
is necessary to use a Church-style syntax and use only β-reduction.

This seems to show the importance of the distinction between β-reduction
and βη-reduction for type theory.

Remark 11 In his paper [12], Garrel Pottinger introduces a variety of the
λ-calculus, which he calls the multivariate λ-calculus, in which a term of the
form λx1x2 . . . xn . M is not an abbreviation for repeated abstraction, but
is a term which can only become the head of a redex if it is followed by n
arguments. Thus in that calculus, (λxyz . xz(yz))MN is not a redex, but
(λxyz . xz(yz))MNP is. If the multivariate λ-calculus is used, then Label
would be a term which requires two arguments to make a redex.

In the multivariate λ-calculus, the reduction is β-reduction, not βη-re-
duction. The reason for this is that η-reduction collapses multivariate ab-
stractions to regular abstractions, since for a multivariate abstract

(λx1x2 . . . xn . M)

and variables u1, u2, . . . , un which do not occur bound or free in our term, we
have

λu1 . λu2 λun . (λx1x2 . . . xn . M)u1u2 . . . un

�β λu1 . λu2 λun . [u1/x1, u2/x2, . . . , un/xn]M

�α λx1 . λx2 λxn . M

and

λu1 . λu2 λun . (λx1x2 . . . xn . M)u1u2 . . . un

�η λu1 . λu2 λun−1 . (λx1x2 . . . xn . M)u1u2 . . . un−1

...

�η (λx1x2 . . . xn . M).

19

This tells us that if η-reduction is introduced into the multivariate λ-calculus
in connection with the use with Label in the previous paragraph, then the
distinction between functions and their restrictions would be lost, just as it
is with η in the Church-style syntax as shown in Remark 10.

4 Curry-style to Church-style

An interpretation in the reverse direction requires a type to use as the domain
in the Church-style syntax to interpret the Curry-style abstract (λx . M).
For this purpose, let us introduce a new atomic constant A, so that the
interpretation of (λx . M) in the Church-style system will be (λx : A . M).
Then we will need to add the following rule to the system:

(Aλ) Γ ` (λx : B . M) : (Πx : B . C)

Γ ` (λx : A . M) : (Πx : B . C).

This rule corresponds to the inference in the Curry-style system from (11)
to (10) provided that we think of the Church-style term (λx : B . M) as
being interpreted by the translation −Cu, and is necessary for the proof of
the Theorem 3 below.

We can now define the mapping from the Curry-style syntax to the
Church-style syntax:

Definition 4 The function −Ch from the Curry-style syntax to the Church-
style syntax is defined by induction on the structure of the pseudoterms:

1. xCh ≡ x,

2. cCh ≡ c,

3. (MN)Ch ≡ MChNCh,

4. (λx . M)Ch ≡ (λx : A . MCh),

5. (Πx : B . C)Ch ≡ (Πx : BCh . CCh).

The following lemmas follow easily by induction:

Lemma 7 If M is a term of the Curry-style syntax, then FV(MCh) =
FV(M).

20

Lemma 8 If M and N are terms of the Curry-style syntax, then
([N/x]M)Ch ≡ [NCh/x]MCh.

Lemma 9 If
M �βCu

N

then
MCh �βCh

NCh.

Definition 5 Given a PTS CS in the Curry-style, define the system λS ′ by
first defining λS to be the Church-style PTS with the same specification as
CS. Then add the typing rule (Aλ) given above.

Note that the system λS ′ is not a PTS. Note also that there are no
postulates which make it possible to deduce ` A : s for any sort s. This
means that in λS ′, the only place in which A can occur is in the domain of an
abstraction. In particular, in λS ′, we cannot introduce assumptions of the
form x : A into any legal context and we cannot prove a result of the form
Γ ` M : A.

Theorem 3 If
Γ ` M : B

in CS, then
ΓCh ` MCh : BCh

in λS ′, and conversely.

The proof is by induction on the proof of Γ ` M : B. The interesting
case is that for (abstrCu), and that case is straightforward using the induction
hypothesis and rule (Aλ). For the converse, note that in a term of the form
MCh, every abstraction has the form (λx : A . M).

The proof of the theorem does not depend on how the type A is inter-
preted, but it might be worth considering how that interpretation should
be carried out. Since (λx : A . M) is the way the Curry-style abstraction
(λx . M) is interpreted, this suggests that we want to interpret (λx : B . M)
for B not convertible to A, as a restriction of (λx : A . M). With this idea
for an interpretation, we might think of rule (Aλ) as making the system,
which is based on the Church-style syntax, more like a system based on the
Curry-style syntax. This idea for an interpretation suggests that our in-
tended interpretation of A is as a type including all terms in all other types.

21

The system λS ′ as defined above does not include any postulates to formalize
this interpretation: all we have in λS ′ is an alternative to adding domain-free
abstraction terms to the Church-style syntax. If we wanted to add such a
postulate, we might consider adding the following rule:

(AI) Γ ` M : B
Γ ` M : A

Condition: B is any
legal type.

It might appear that this significantly strengthens the system. However,
unless we add an axiom of the form A : s for some sort s, it is impossible to
prove that a type of the form (Πx : A . B) has any sort as its type, so a type
of this form cannot be the type of a conclusion of (abstrCh). Hence, it does
not appear that adding rule (AI) would have that much effect on the system.
In particular, appears that adding rules (AI) and (Aλ) to a system satisfying
strong normalization would preserve strong normalization.

Another possibility would be to interpret A as the type ω that is the type
of every term (or pseudoterm in a Church-style syntax, but with ω present
as a type, every pseudoterm in a Church-style system is a legal term), which
is the way this type is used in intersection type systems. Then instead of
rule (AI), we would add the rule

(ωI) Γ ` M : ω Condition: M is
any pseudoterm of
the Church-style
semantics,

This would automatically give a type to every pseudoterm of the Church-
style semantics. Since the Curry-style system with which we are starting is a
PTS, whose postulates exclude a rule like (ωI), this really would strengthen
the system. And this rule clearly does not satisfy strong normalization.

Note that adding postulates to interpret A as a type is not necessary to
the interpretation of the Curry-style PTS in a Church-style system.

5 Open Questions

The following questions arise naturally from the above interpretations, but
are so far unanswered:

22

1. In the Church-style syntax, we might consider adding η-contractions
and also the contraction scheme

(λx : B . M) � (λx : A . M). (27)

This is roughly equivalent to adding Curry-style abstractions to the
Church-style syntax and then adding the contraction scheme

(λx : B . M) � (λx . M).

In conjunction with this extended reduction, the typing rule (Aλ) would
preserve the Subject-Reduction Theorem. Furthermore, the contrac-
tion scheme (27) is the analogue for the Church-style syntax of a valid
reduction in the Curry-style syntax under the interpretation of this
paper. But would the Church-Rosser property hold for this reduction?

2. If we interpret A as the type ω as suggested above, then the normal
form theorem fails. In intersection type systems with this type, it can
be proved that any term that has a type in which ω does not occur has
a normal form. Would this be true here?

3. Suppose that instead of PTSs we consider the more liberal versions of
PTSs of [3]. How are the results of this paper affected?

References

[1] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 117–309. Oxford University Press, 1992.

[2] G. Barthe and M. H. Sørensen. Domain-free pure type systems. Journal of
Functional Programming, 10(5):412–452, September 2000.

[3] M. Bunder and W. Dekkers. Pure type systems with more liberal rules.
Journal of Symbolic Logic, 66:1561–1580, 2001.

[4] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[5] H. Curry, J. Hindley, and J. Seldin. Combinatory Logic, volume 2. North-
Holland Publishing Company, Amsterdam and London, 1972.

[6] H. Geuvers. the church-rosser property for βη-reduction in typed λ-calculi. In
Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 453–460. IEEE Computer Society, IEEE Computer Society
Press, 1992.

23

[7] J. Hindley and J. Seldin. Lambda-Calculus and Combinators, an Introduction.
Cambridge University Press, 2008.

[8] Z. Luo. ECC, an extended calculus of constructions. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, June 1989, Asilo-
mar, California, U.S.A., 1989.

[9] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990.

[10] R. P. Nederpelt. Strong Normalization in a Typed Lambda Calculus with
Lambda Structured Types. PhD thesis, Technical University of Eindhoven,
1973.

[11] G. Pottinger. Ulysses: Logical and computational foundations of the primitive
inference engine. Technical Report TR 11-8, ORA Corporation., January
1988.

[12] G. Pottinger. A tour of the multivariate lambda calculus. In J. M. Dunn and
A. Gupta, editors, Truth or Consequences: Essays in Honor of Nuel Belnap,
pages 209–229. Kluwer Academic Publishers, Dordrecht, Boston, and London,
1990.

[13] G. Pottinger and J. P. Seldin. Interpreting Church-style typed λ-calculus
in Curry-style type assignment. Former title, “Note on η-Reduction and
Labelling Bound Variables in Typed λ-Calculus.” Unpublished.

[14] J. Seldin. Progress report on generalized functionality. Annals of Mathemat-
ical Logic, 17:29–59, 1979.

[15] J. Seldin. On the proof theory of Coquand’s calculus of constructions. Annals
of Pure and Applied Logic, 83:23–101, 1997.

[16] S. van Bakel, L. Liquori, S. R. della Rocca, and P. Urzyczyn. Comparing
cubes of typed and type assignment systems. Annals of Pure and Applied
Logic, 86(3):267–303, 1997.

24

