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Abstract

In this paper it is shown that every intermediate logic obtained
from intuitionistic logic by adding a disjunction can be normalized.
However, the normalization procedure is not as complete as that for
intuitionistic and minimal logic because some results which usually
follow from normalization fail, including the separation property and
the subformula property.
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By a disjuctive intermediate logic I mean a system of logic obtained by
adding to intuitionistic logic an axiom scheme of the form

C1(A1, A2, . . . , Am) ∨ C2(A1, A2, . . . , Am) ∨ . . . ∨ Cn(A1, A2, . . . , Am),

where Ci(A1, A2, . . . , Am) is a formula scheme in which A1, A2, . . . , Am occur
as parameters.

∗This work was supported in part by a grant from the Natural Sciences and Engineering
Research Council of Canada. The paper was presented at the 39th Annual Meeting of the
Western Canadian Philosophical Association, Calgary, 25–27 October, 2002.
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Some examples of disjunctive intermediate logics are given by Umezawa [9]
as follows:

(M) ¬¬A ∨ ¬A.

(Pn) (A1 ⊃ A2) ∨ (A1 ⊃ A3) ∨ . . . ∨ (A1 ⊃ An) ∨ (A2 ⊃ A1) ∨ (A2 ⊃
A3)∨ . . .∨(A2 ⊃ An)∨ . . .∨(An ⊃ A1)∨(An ⊃ A2)∨ . . .∨(An ⊃ An−1),
where n ≥ 2 and, for any (Ai ⊃ Aj), i �= j. A special case is (P2), when
the axiom is (A1 ⊃ A2) ∨ (A2 ⊃ A1), and the logic is also known as
(LC).

(Rn) A1 ∨ (A1 ⊃ A2) ∨ (A2 ⊃ A3) ∨ . . . ∨ (An−1 ⊃ An) ∨ ¬An, where n ≥ 2.

(ME) (∀x)¬¬A(x) ∨ (∃x)¬A(x).

(MEK◦) ¬¬(∀x)A(x) ∨ (∃x)¬A(x).

(DP2) (∀x)(A ⊃ B(x)) ∨ (∃x)(B(x) ⊃ A).

(FP2) (∃x)(∀y)(A(x) ⊃ B(y)) ∨ (∃y)(∀x)(B(y) ⊃ A(x)).

(GP2) (∃y)(∀x)(A(x) ⊃ B(y)) ∨ (∃x)(∀y)(B(y) ⊃ A(x)).

(FGP2) (∃x)(∃u)(∀y)(∀v)(A(x, v) ⊃ B(y, u))∨(∃y)(∃v)(∀x)(∀u)(B(y, u) ⊃ A(x, v)).

(ERn) (∀x)A1(x)∨(∃x)(∀y)(A1(x) ⊃ A2(y))∨. . .∨(∃x)(∀y)(An−1(x) ⊃ An(y)))∨
(∃x)¬An(x).

In addition, classical logic can be formulated in this form as follows:

(K) ¬A ∨ A.

López-Escobar [7] gives another example:

(LICn) (A1 ⊃ A2)∨(A2 ⊃ A3) ⊃ . . . ⊃ (An−1 ⊃ An)∨(An ⊃ A1), where n ≥ 2.
Note that (LC) is also (LIC2),

and he also points out that classical logic can be axiomatized by adding to
intuitionistic logic the axiom

(C) (A ⊃ B) ∨ A.
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(López-Escobar is considering only the implication fragments of these logics,
but his definitions apply to full predicate logics.)

The purpose of this paper is to look at natural deduction versions of these
systems and to prove a normalization result for them. The normalization
result obtained does not imply all of the results of normalization for classical
or intuitionistic logic. In particular, the subformula property fails. Arnon
Avron [1] has used the method of hypersequents to give a formulation that
does satisfy the subformula property for one of the logics considered here,
the logic (LC).

Since the intuitionistic rule
⊥
A

⊥I

is not used in any essential way in obtaining these rusults, they also hold if
the axioms in question are added to minimal logic instead of intuitionistic
logic. If (K) is added to LM, the result is the system which Curry [3] called
(in a sequent L-version) LD. If (C) is added instead, the system obtained
is the system called LE in [4], which is due to Paul Bernays [2] and first
extensively studied by Saul Kripke [6].1

I would like to thank Richard Zach for his helpful comments and sugges-
tions.

1 The Natural Deduction Formulation

First, let us recall the system TM2 of minimal predicate logic. It has no
axioms, and its rules are as follows:

∧I A1 A2

A1 ∧ A2

∧E A1 ∧ A2

Ai

∨I Ai

A1 ∨ A2

∨E
A ∨ B

[A]
C

[B]
C

C

1See [4, p. 260, p. 306]. The system was also studied by Kanger [5] before Kripke’s
extensive study.

2This name is due to Curry; see [4, p. 280]. Actually, Curry reserved the name TM for
propositional logic only, using the name TM∗ for the predicate logic, but since I am not
considering the popositional case separately, I will drop the superscript asterisk.
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⊃I [A]
B

A ⊃ B

⊃E A ⊃ B A
B

∀I A(c)

(∀x)A(x)
∀E (∀x)A(x)

A(t)

∃I A(t)

(∃x)A(x)
∃E

(∃x)A(x)
[A(c)]

C

C

where in rules ∧E and ∨I, i = 1 or i = 2; in rules ∀E and ∃I, t is any term;
and in rules ∀I and ∃E, c is an eigenvariable, which is a variable which does
not occur free in any undischarged assumption (or, in the case of ∃E, in C).
Also, ¬A is defined to be A ⊃ ⊥, so that negation satisfies the derived rules

¬I [A]
⊥
¬A

¬E ¬A A
⊥

Recall also that the system TJ of intuitionistic logic is obtained from TM
by adding the rule

⊥I
A
⊥

Now, let us write Ci( �A) for Ci(A1, A2, . . . , Am). Then the axiom of a
disjunctive intermediate logic has the form

C1( �A) ∨ C2( �A) ∨ . . . ∨ Cn( �A).(1)

For the systems he considers, López-Escobar [7] proposes replacing axiom (1)
by the rule

[C1( �A)]
C

[C2( �A)]
C . . .

[Cn( �A)]
C

C
Ds

Theorem 1 Adding axiom (1) to TM (respectively TJ) is equivalent to
adding rule Ds to TM (respectively TJ).

4



Proof Suppose that we have added rule Ds to TM (or, for that matter TJ),
and suppose we are given deductions

C1( �A)
D1

C ,

C2( �A)
D2

C , . . . ,

Cn( �A)
Dn

C .

Then, writing Ci for Ci( �A), E2 for C2 ∨ E3, E3 for C3 ∨ E4, . . . , En−1 for
Cn−1 ∨ Cn, we can proceed as follows:

C1 ∨ E2

1
[C1]
D1

C

2
[C2 ∨ E3]

3
[C2]
D2

C . . .

2n − 2
[Cn−1 ∨ Cn]

2n − 1
[Cn−1]
Dn−1

C

2n
[Cn]
Dn

C

C
∨E − (2n − 1), 2n

...
C

C
∨E − 3, 4

C
∨E − 1, 2

Conversely, suppose we have added rule Ds to TM. Then we can deduce
axiom (1) as follows:

1
[C1]

C1 ∨ C2 ∨ . . . ∨ Cn
repeated ∨ E

. . .

n
[Cn]

C1 ∨ C2 ∨ . . . ∨ Cn
repeated ∨ E

C1 ∨ C2 ∨ . . . ∨ Cn
Ds − 1, 2, . . . n

For the rest of the paper, we will assume that our disjunctive intermediate
logic is obtained from TJ by adding rule Ds.

Definition 1 The system TI will be obtained from TJ by adding the rule
Ds.

2 The Normalization Result

Recall that the deduction reduction steps for TJ (and also TM) are as follows:
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∧-reduction steps:
D1

A1

D2

A2

A1 ∧ A2
∧I

Ai
∧E

D3

reduces to

Di

Ai

D3

∨-reduction steps:

D0

Ai

A1 ∨ A2
∨I

1
[A1]
D1

C

2
[A2]
D2

C
C

∨E − 1, 2

D3

reduces to

D0

Ai

Di

C
D3

⊃-reduction steps:
1

[A]
D1

B
A ⊃ B

⊃I − 1 D2

A
B

⊃E

D3

reduces to

D2

A
D1

B
D3

∀-reduction steps:
D1(c)
A(c)

(∀x)A(x)
∀I

A(t)
∀E

D3

reduces to

D1(t)
A(t)
D3

∃-reduction steps:

D1

A(t)

(∃x)A(x)
∃I

1
[A(c)]
D2(c)

C

C
∃E − 1

D3

reduces to

D1

A(t)
D2(t)

C
D3
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∨R-reduction steps: If R is an E-rule with C as its major (left) premise and
(D3) as the deduction(s) of its minor premises, if any, then

D0

A1 ∨ A2

1
[A1]
D1

C

2
[A2]
D2

C
C

∨E − 1, 2
(D3)

E
R

D4

reduces to

D0

A1 ∨ A2

1
[A1]
D1

C (D3)

E
R

2
[A2]
D2

C (D3)

E
R

E
∨E − 1, 2

D4

∃R-reductions: If R is an E-rule with C as its major (left) premise and (D3)
as the deduction(s) of its minor premises, if any, then

D1

(∃x)A(x)

1
[A(c)]
D2(c)

C

C
∃E − 1

(D3)

E
R

D4

reduces to

D1

(∃x)A(x)

1
[A(c)]
D2(x)

C (D3)

E
R

E
∃E − 1

D4

To these reduction steps, we add one for rule Ds:
DsR-reduction steps: If R is an E-rule with C as its major (left) premise and
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(D0) as the deduction(s) of its minor premises, if any, then

1
[C1]
D1

C

2
[C2]
D2

C . . .

n
[Cn]
Dn

C
C

Ds − 1, 2, . . . , n
(D0)

E
R

Dn+1

reduces to

1
[C1]
D1

C (D0)

E
R

2
[C2]
D2

C (D0)

E
R

. . .

n
[Cn]
Dn

C (D0)

E
R

E
Ds − 1, 2, . . . , n

Dn+1

Theorem 2 Every deduction in this disjunctive intermediate logic can be
reduced to a normalized deduction.

Proof Similar to the proof by Prawitz [8, Chapter IV Theorem 1] of the
normalization of minimal and intuitionistic predicate logic. Extend the defi-
nition of segment so that if a premise of rule Ds in in a segment, then so is
the conclusion. Then Prawitz’ procedure for removing maximum segments
works for this system.

Remark 1 I conjecture that it is possible to prove strong normalization
(that every sequence of reduction steps terminates), but I have not tried to
find a proof.

3 A Gentzen L-formulation

Let us recall that the Gentzen formulation LM of minimal logic is defined as
follows: the axiom scheme is

Ax A � A .
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The structural rules are as follows:

*C Γ1, B, A, Γ2 � C

Γ1, A, B, Γ2 � C

*K Γ � C
Γ, A � C

*W Γ, A, A � C

Γ, A � C

Cut Γ, A � C Γ � A

Γ � C

The operational rules are:

*∧ Γ, Ai � C

Γ, A1 ∧ A2 � C
∧* Γ � A1 Γ � A2

Γ � A1 ∧ A2

*∨ Γ, A1 � C Γ, A2 � C

Γ, A1 ∨ A2 � C
∨* Γ � Ai

Γ � A1 ∨ A2

*⊃ Γ � A Γ, B � C

Γ, A ⊃ B � C
⊃* Γ, A � B

Γ � A ⊃ B

*∀ Γ, A(t) � C

Γ, (∀x)A(x) � C
∀* Γ � A(c)

Γ � (∀x)A(x)

*∃ Γ, A(c) � C

Γ, (∃x)A(x) � C
∃* Γ � A(t)

Γ � (∃x)A(x)

Here, in rules *∧ and ∨*, i = 1 or i = 2; in rules *∀ and ∃*, t is any term;
and in rules ∀* and *∃, c is a variable which does not occur free in Γ (or C).

The system LJ is obtained from LM by adding the rule

⊥J Γ � ⊥
Γ � A

A cut-free derivation is a derivation in which rule (cut) does not occur.
The Gentzen-style L-rule corresponding to Ds is

Dx Γ, C1( �A) � C Γ, C2( �A) � C . . . Γ, Cn( �A) � C

Γ � C
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Definition 2 The system LI is obtained from the system LJ by adding rule
Dx.

Theorem 3 If
Γ � A

is derivable in system LI, then there is a deduction of it in TI.

Proof An easy induction on the derivation of Γ � A.

Theorem 4 If there is a normal deduction of

Γ � A

in TI, then there is a cut-free derivation of it in LI.

Proof Similar to the proof of Prawitz [8, Appendix A, Theorem]. An extra
case for Ds is needed, where Ds is neither an I-rule nor an E-rule; this case
is easy using Dx.

Theorem 5 If
Γ � A

can be derived in LI, then there is a cut-free derivation of it.

Proof Theorems 2, 3, and 4.

Remark 2 Curry [4, p. 262] uses as his rule Nx a special case of Dx. How-
ever, he does not use the corresponding rule for his rule Px, which he takes
instead in the form

Γ, A ⊃ B � A

Γ � A

Remark 3 There are properties that follow from normalization for minimal
and intuitionistic logic which do not hold for TI or LI. These include the
separation property (which says that only if a connective or quantifier appears
in an undischarged assumption or in the conclusion are its rules used in
the deduction) and the subformula property (which says that every formula
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occurring in a deduction occurs in one of the undischarged assumptions or
in the conclusion). It is easy to see that rule Ds (or Dx) may result in
the discharge (disappearance from the cut-free deduction) of a connective or
quantifier or of a subformula that does not occur in another undischarged
assumption or in the conclusion. Furthermore, it is easy to see that rule Dx
is a special case of (cut). This suggests that the normalization procedure
given in this paper is not complete.
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