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This paper is a continuation of the paper I presented last year, [7].
In that paper, I referred to a talk given in 2005 by Keith Devlin [3], in which he

divided mathematics into two kinds:

• Elementary mathematics: Definitions can be understood when given.

• Formal mathematics: Definitions must be used before they can be understood.

Devlin suggested that formal mathematics is very difficult for some people to learn,
and went on to suggest that some people may never be able to learn formal mathe-
matics.

I suggested in [7] that “Formal” applies to the presentation, not the subject
matter. After all, definitions which are formal to most of us are not formal to those
who first thought of them. This suggests that the difficulty that many people have
in learning from a formal presentation is an educational problem that it should be
possible to overcome. The obvious way to try to solve the problem is to:

• Make presentations elementary before the transition course to advanced math-
ematics.

• Design the transition course so that students who finish it can learn formally
presented mathematics.
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Since many students who have taken this transition course have still not learned how
to learn formally presented mathematics, it may be necessary to apply these ideas
also to some courses that students take after this transition course.

Sherry Mantyka, of Memorial University, who runs a program of remedial math-
ematics for students who are weak in the subject, referred in [4], to three stages of
mathematical learning:

1. Present the rule to be learned, and, in the process explain why the rule makes
sense.

2. Practice the rule with many examples.

3. Use the rule in problem solving.

The importance of the second step is that our working memory is fairly small, and
we cannot do with our brains what we do with our computers, namely, take them
to a dealer for a memory upgrade. The point of practicing with many examples is
to make the use of the rule automatic, which means transferring its use to another
part of the brain, thus freeing up our working memory for other tasks. This is true
in learning to play a sport or learning to play a musical instrument as well as the
learning of mathematics.

The ideas of this paper concern the first of these steps.
Last year, in [7], I suggested that one place to apply the ideas of this paper is to

a first, third-year course in analysis. I was able to try this in the fall of 2006 because
I was teaching that course here at the University of Lethbridge. Furthermore, since
the Department of Mathematics and Computer Science at this university had already
decided to introduce a fourth-year course in analysis, I felt able to take a risk that
might result in some topics not being covered, since students could cover those topics
in a later course. I proposed to run the course as a critique of calculus and use it as
a vehicle to introduce the theory of analysis. Here is the catalog description:

Rigorous treatment of the notions of calculus of a single variable, em-
phasizing epsilon-delta proofs. Completeness of the real numbers. Upper
and lower limits. Continuity. Differentiability. Riemann integrability.

Here is the proposed course outline:

1. Introduction to a critique of calculus. In evaluation of derivative
of f(x) at x = a, we do manipulations that depend on x not being a and
then substitute a for x. Why can we do this? Berkeley’s [1]. How can we



justify using calculus? What constitutes a proof in mathematics? (Ideas
from outline for transition course if students have not had it.)

2. Ancient Greek approach to numbers and magnitudes. Zeno’s para-
doxes. Some pre-Euclidean proofs. Knorr’s proof that the side and di-
agonal of a square are incommensurable. Discussion of this and what it
could mean to measure a length exactly.

3. Idea behind limits. Preliminary theory of limits. Have students
list limit theorems from their calculus text (or give them such a list) and
have them determine which ones need to be taken as axioms from which
the others can be proved. Show that this is incomplete. Then use my
paper [6] to get ε−N definition, and from this get ε− δ.

4. What must be true of quantities or numbers for all this to work?
Why rationals are not enough. How can we get reals? Evolution from
ancient Greek ideas to modern ideas. Construction of number systems.

5. Countable and uncountable sets. Start with Galileo’s observation
that positive integers can be paired with the positive perfect squares.
Additional examples. Uncountability of reals, and proof that set of real
valued functions of real numbers has higher cardinality than reals. In-
troduce language of set theory from this, and also discuss functions and
their properties.

6. Metric topological properties of real numbers. More on limits.
Continuity. Sequences, series, and convergence.

7. Derivatives. Use of limits in defining. The derivative is a function
of a function.

8. Riemann integrability. Properties of lubs and glbs needed to prove
properties.

9. If time, measure theory and Lebesgue integral. Start with question
of what sets of points of discontinuity a function can have and still have
an integral, based on Fourier series.

When I taught this course last fall. I was unable to cover all the outline: I had to
leave out 5, most of 6, 7, and 9 above. I also learned some things about the following
items from the outline:

2. It seems useful to cover the work of Theodorus and Theaetetus on incom-
mensurable magnitudes. This course should be partly a study of the kinds of
arguments used in the past in dealing with the subject. It might also be useful
to spend some time on the theory of even and odd numbers, which is consid-
ered to be the oldest deductive theory of which we have a record in Book VII



of Euclid’s Elements. Students could be assigned exercises to construct pebble
diagrams.

3. My original idea for the first theory of limits was to list limit properties familiar
from calculus and ask students to come to the board and prove some from
others. But some students felt discriminated against because they were too
shy, and this also took up too much time. I do not plan to try this again.
Instead, I will simply preseent the axioms and give exercises for some of the
theorems.

Getting the ε−N definition of a limit from theorems of Euclid and Archimedes:
since Archimedes (in his work on the measurement of a circle) used the con-
struction from Euclid (due to Eudoxus) from the theorem that circles are to
each other as the squares of their diameters, and since Archimedes assumed
that the construction was well known, the theorem from Euclid should be cov-
ered first. Also, there are places where students need annotations to the proofs
in Euclid and Archimedes, and there are places at which they need sentences
written as formulas.

Once the ε − N and epsilon-delta definitions are given, students need some
“how to” instructions for constructing proofs of this kind.

4. The Axiom of Completeness for the real numbers can be justified from the
ε − N definition as follows: consider an increasing sequence bounded from
above. Intuitively, this sequence must have a limit. But assuming that the
limit is anything other than the least upper bound of the elements of the
sequence negates the ε−N definition.

For suppose an is an increasing sequence bounded from above.

1. Suppose that a is a number for which an ≤ a for all n is false. Then for
some N , a < aN . Since the sequence is increasing, a < aN < am for all
m > N . Let ε = aN − a > 0. Then for all m > N , am > aN > a, so
|am − a| > ε for all m > N . Hence, by the definition, a is not the limit of
the sequence.

2. Suppose that there is a number b < a such that b ≥ an for all n. Let
ε = a− b > 0. Then, since a > b ≥ an for all n, |a− an| ≥ ε for all n, and
so a is not the limit of the sequence.

It follows that the limit of the sequence must be the least upper bound.



To guarantee that any increasing sequence bounded from above has a limit, it
seems necessary to have the Completeness Axiom for the reals.

This can be shown without using the phrase “least upper bound”. It can be
presented without a formal presentation. The phrase “least upper bound”,
or “supremum”, can be defined after this presentation, when a name seems
desirable.

It is also easy to show from this that the rational numbers are not enough.
Dedekind, in [2], gives a formula which can be used to generate a sequence of
rational numbers approaching

√
n for any n either from below or from above.

Another formula for generating a sequence approaching
√

2 from below is given
by Perron in [5]. These make it easy to show that there is no least upper bound
for a sequence of rational numbers approaching

√
2 from below.

Because of the course catalog description, I felt a need to include lim sup and
lim inf in the course. Last fall, I could not find a good non-formal way to do this.
On thinking about it, I think I should start by talking about tails of sequences, em-
phasizing that if the first N terms of a sequence are replaced, the limit is unchanged,
even if N is very large. This clearly means that from N on, the tails are unchanged.
It should be easy to discuss properties of tails without using a formal presentation,
and show that for a bounded sequence, the tails are bounded and hence have inf’s
and sup’s. I hope to find a way to lead into a discussion of lim sup’s and lim inf’s
without using a formal presentation.
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