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Abstract

The purpose of this paper is to explain an approach to formal logic
which is concerned with provability rather than with truth alone, as in
the traditional approach. The traditional approach to propositional
logic will probably be familiar to programmers, since it has been in-
corporated into most programming languages and spreadsheets. The
approach explained in this paper has, however, become important in
computer science in recent years. It is characterized by taking proofs
as objects which can be manipulated.

The idea of treating proofs as mathematical objects to be manipulated
goes back to Hilbert, who, in response to the attacks on classical mathematics
from the intuitionists, proposed to ground classical mathematics by treating
proofs as arrays of meaningless symbols (using a formalized language) and
proving by unquestionably valid combinatorial techniques that no proof could
end in a formula with the form of a contradiction. Gödel’s Second Theorem,
which shows that it is impossible to prove the consistency of any system
(strong enough to be interesting) by means of proof which can be expressed
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within the system, is usually interpreted to mean that Hilbert’s idea will not
work in the way that he intended it to. However, some mathematicians and
philosophers have disputed this interpretation, and, over the years, a number
of important mathematical systems have been proved consistent in this way,
including the elementary theory of numbers and elementary classical analysis.

This paper is an introduction to techniques of this kind due to Gerhard
Gentzen [2] and Dag Prawitz [3], with emphasis on propositional logic. The
ideas have become important in computer science in recent years.

We begin in §1 with a discussion of propositional logic as given by truth
tables. In §2, we will look at a natural deduction formulation of this logic,
system TM. In §3, we will look at normalization for pure implication formulas.
This is a method for proving consistency and other results that is due to Dag
Prawitz [3]. In §4, we will look at normalization and its consequences for
the full natural deduction system introduced in §2, and we will see that that
system is not complete in that not all truth-table tautologies are provable.
We will also define two stronger systems, TJ and TK. In §5, we will look
L-formulations of TM and TJ; these are systems due to Gentzen [2] which
are useful in proof searches. In §6, we will look at an L-formulation of TK,
and we will use this system that every tautology can be proved in TK.

The first part of this paper, §1 – §4, was presented at a seminar talk at
the Department of Mathematics at the University of Wollongong in Australia
on 31 July 1986, and has been presented in a number of other talks since.

1 Propositional logic with truth tables

Until further notice, we shall deal with formulas built up from atomic for-
mulas by means of connectives ∧ (and), ∨ (or), and ⊃ (implies). One of the
atomic formulas will be ⊥ (absurdity), and negation will be defined using
absurdity by ¬A ≡ A ⊃ ⊥.

In traditional logic, formulas are assigned truth values by means of truth
tables. There are two truth values: T (true) and F (false). Absurdity, ⊥, is
always assigned the value F. For any given assignment of truth values to the
other atomic formulas, truth values are assigned to compound formulas by
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the following table:

A B A ∧ B A ∨ B A ⊃ B
T T T T T
T F F T F
F T F T T
F F F F T

This gives us the following derived truth table for negation:

A ¬A
T F
F T

A formula which has a truth table in which all of the entries for it are T
is called a tautology. An example of a tautology is ¬A ∨ A, which has the
following truth table:

A ¬A ¬A ∨ A
T F T
F T T

This traditional approach to propositional logic is concerned with truth
but not with provability. It has been incorporated into programming lan-
guages (and spreadsheets) in the boolean data type. (But in this incorpora-
tion, ⊃ is usually not defined, and our derived table for negation is taken as
primitive. In such a logic, A ⊃ B can be defined to be ¬A ∨ B, which has
the same truth table.)

2 Logic with proofs as trees: natural deduc-
tion

One of the most common ways of taking proofs as objects to be manipulated
is to write proofs as tree diagrams. We will do this for a system of natural
deduction. In this system there are no axioms, and the rules come in pairs,
one for introducing a given connective and the other for eliminating it.

For example, a conjunction can be introduced by the following rule:

Rule for Conjunction Introduction (∧I) From A and B to infer A∧B.
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This rule is written in the form of a tree diagram as follows:

A B
A ∧ B.

Here, the premises are written above the line and the conclusion below it. If,
as these rules are combined to form larger deductions, we want to indicate
the rule used, we can write it to the right of the line:

A B
A ∧ B.

∧I

When a tree diagram of a deduction is constructed in this way, the idea is
that the formulas at the tops of the branches are the assumptions on which
the conclusion depends.

For eliminating conjunction, we have the following rules:

Rule for Conjunction Elimination (∧E) From A ∧ B to infer either A
or B.

In tree form, we get the following:

A ∧ B
A,

A ∧ B
B.

For disjunction, we also have two rules for its introduction:

Rules for Disjunction Introduction (∨I) From either A or B to infer
A ∨ B.

In tree form,this is

A
A ∨ B,

B
A ∨ B.

The rule for eliminating disjunction is more complicated:

Rule for Disjunction Elimination (∨E) From A ∨ B, a deduction of C
from A (and the other assumptions), and a deduction of C from B (and the
other assumptions), to infer C.
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This is proof by cases. The complication is that the second and third
premises are not formulas but entire deductions. Furthermore, the conclusion
C of the first of these deductions depends on one more assumption, A, than
the conclusion C of the inference, and the conclusion C of the second of these
deductions depends on one more assumption, B, than does the conclusion
C of the inference. This is indicated in the tree diagram by putting square
brackets around these extra assumptions as follows:

A ∨ B
[A]
C

[B]
C

C.

The assumptions in brackets are said to be discharged by the inference, and
this is a sign that the premises are, indeed, entire deductions. In a diagram of
a multi-rule deduction, when it is desired to indicate the inferences at which
formulas are discharged, numbers are used as follows:

A ∨ B

1
[A]
C

2
[B]
C

C.
(∨I − 1 − 2)

A simpler form of discharging of assumptions occurs in the rule for intro-
ducing implication:

Rule for Implication Introduction (⊃I) From a deduction of B from A
(and other assumptions), to infer A ⊃ B.

This is the rule of conditional proof. In tree form, we have

[A]
B

A ⊃ B.

The rule for eliminating ⊃ is modus ponens:

Rule for Implication Elimination (⊃ E) From A ⊃ B and A to infer B.

In tree form, this is
A ⊃ B A

B.
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By using the definition of ¬A as A ⊃ ⊥, it is possible to derive the
following introduction and elimination rules for it:

Rule for Negation Introduction (¬I) From a deduction of ⊥ from A
(and other assumptions) to infer ¬A.

This is a form of the rule of indirect proof. In tree form, it is

[A]
⊥
¬A.

Rule for Negation Elimination (¬E) From ¬A and A to infer ⊥.

In tree form:
¬A A

⊥.

This shows that ⊥ stands for a general contradiction.

Definition 1 The System TM has formulas built up from atomic formulas
(one of which is ⊥) by means of the binary connectives ∧, ∨, and ⊃. It
has no axioms. Its rules are (∧I), (∧E), (∨I), (∨E), (⊃I), (⊃E). If Γ is a
set of formulas, then we say that A can be deduced from Γ when there is a
deduction in tree form built up using these six rules in which the formula
at the bottom is A and every assumption (formula at the top of a branch)
which is not discharged is in Γ. In this case, we write

Γ 
 TMA,

or, if the context makes the system clear,

Γ 
 A.

A proof is a deduction in which there are no undischarged assumptions. To
say that there is a proof of A, we write


 TMA,

or, if the context makes the system clear,


 A.
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This may perhaps be made a bit clearer with some examples:

Example 1 Proof of 
 A ⊃ A:

1
[A]

A ⊃ A.
⊃ I − 1

A formula may be discharged even if it does not actually occur at the top
of a branch:

Example 2 Proof of 
 A ⊃ (A ⊃ B):

1
[A]

B ⊃ A
(⊃ I − v)

A ⊃ (B ⊃ A).
(⊃ I − 1)

Here, the assumption B which is discharged at the first inference by (⊃I)
does not actually occur at the top of a branch, and this is indicated by the
label “(⊃ I − v)” (the “v” stands for “vacuous”).

More than one occurrence of an assumption can be discharged at one
inference:

Example 3 Proof of 
 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)):

3
[A ⊃ (B ⊃ C)]

1
[A]

B ⊃ C
(⊃ E)

2
[A ⊃ B]

1
[A]

B
(⊃ E)

C
(⊃ E)

A ⊃ C
(⊃ I − 1)

(A ⊃ B) ⊃ (A ⊃ C)
(⊃ I − 2)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)).
(⊃ I − 3)

Here, the two occurrences of assumption number 1 are discharged at the first
inference by (⊃I).

Sometimes it is necessary to derive a formula more than once in order to
be able to discharge enough assumptions:
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Example 4 Proof of 
 (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B):

2
[A ⊃ (A ⊃ B)]

1
[A]

A ⊃ B
(⊃ E) 1

[A]

B
(⊃ E)

A ⊃ B
(⊃ I − 1)

(A ⊃ (A ⊃ B)) ⊃ (A ⊃ B).
(⊃ I − 2)

Example 5 Proof of A ⊃ B, B ⊃ C 
 A ⊃ C:

B ⊃ C

A ⊃ B
1

[A]

B
(⊃ E)

C
(⊃ E)

A ⊃ C.
(⊃ I − 1)

3 Reductions of deductions with only impli-
cation formulas

In this section, we consider formulas without ∧ and ∨, which means that
here our formulas are built from the atomic formulas using only ⊃. We shall
look at manipulations on deductions using these formulas from which some
important metatheorems (including consistency) can be proved.

⊃-reduction step A ⊃-reduction step is the replacement of a part of a
deduction of the form

1
[A]
D1

B
A ⊃ B

(⊃ I − 1) D2

A
B

(⊃ E)

D3

by
D2

A
D1

B
D3.
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(Note that the number of occurrences of D2 needed in the reduced deduction
is the same as the number of occurrences of the assumption discharged at the
indicated inference by (⊃I) in the first deduction.) The indicated formula
A ⊃ B in the first deduction is called the cut formula of the reduction step.
A reduction is a (possibly empty) sequence of reduction steps.

Example 6 Consider the deduction

2
[A ⊃ (A ⊃ A)]

1
[A]

A ⊃ A
(⊃ E) 1

[A]

A
(⊃ E)

A ⊃ A
(⊃ I − 1)

(A ⊃ (A ⊃ A)) ⊃ (A ⊃ A)
(⊃ I − 2)

3
[A]

A ⊃ A
(⊃ I − v)

A ⊃ (A ⊃ A)
(⊃ I − 3)

A ⊃ A.
(⊃ E)

It has a cut formula (the major [or left] premise of the last inference). Thus,
a reduction step leads to

1
[A]

A ⊃ A
(⊃ I − v)

A ⊃ (A ⊃ A)
(⊃ I − 1) 2

[A]

A ⊃ A
(⊃ E) 2

[A]

A
(⊃ E)

A ⊃ A.
(⊃ I − 2)

There is also a cut formula here: A ⊃ (A ⊃ A). (Note that this cut formula
was created by the previous reduction step.) Another reduction step leads
to

1
[A]

A ⊃ A
(⊃ I − v) 1

[A]

A
(⊃ E)

A ⊃ A.
(⊃ I − 1)

Here, again, there is a cut formula (the first A ⊃ A), and this reduces to
Example 1.

Definition 2 A normal deduction is one which cannot be further reduced;
i.e., a deduction in which there are no cut formulas.
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In a normal deduction, no I-rule precedes an E-rule in any branch, where
a branch starts at the top of a deduction and ends with a minor (right)
premise for an inference by (⊃E).

Theorem 1 (Normalization) Every deduction can be reduced to a normal
deduction with the same undischarged assumptions and the same conclusion.

Proof Define the rank of a formula to be the number of connectives occurring
in it. The proof is by a double induction, first on the maximum rank of any
cut formula in the given deduction, and second by the number of cut formulas
with that maximum rank. If there are any cut formulas in the deduction,
reduce a cut formula with maximum rank such that there is no other cut
formula with this maximum rank above this cut formula or above the minor
premise associated with it. Any new cut formulas introduced by the reduction
will have lower rank, so either the number of cut formulas of maximum rank
is reduced by one or, if that number was already one before the reduction,
the maximum rank of a cut formula in the deduction is reduced by one.

Theorem 2 (Consistency) There is no proof (deduction without undis-
charged assumptions) whose conclusion is an atomic formula.

Proof If there were such a proof, there would be such a deduction which is
normal. Now the main (left) branch of a normal deduction which ends in an
atomic formula cannot have any inferences by (⊃I); for these inferences would
have to occur at the end of the branch, and this would mean that the last
inference of the deduction is by (⊃I), contradicting the hypothesis that the
conclusion is an atomic formula. But since (⊃I) is the only rule we have here
that discharges an assumption, the formula at the top of the main branch is
not discharged, contradicting the assumption that the deduction is a proof.

This theorem gives us the consistency of the system. In particular, since
⊥ is an atomic formula, we have the following corollary:

Corollary 2.1 Not 
 ⊥.

The fact that in every branch of a normal deduction all inferences by
(⊃E) precede all inferences by (⊃I) gives us the following result:
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Theorem 3 (Subformula property) Each formula occurring in a normal
deduction is a subformula of the conclusion or of one of the undischarged
assumptions.

This theorem is useful in searching for proofs. Later in the paper, we
shall see more on proof searches.

4 Reductions of all deductions

Let us now extend the results of the previous section to all deductions. To
begin, we need reduction steps for ∧ and ∨.

∧-reduction step A ∧-reduction step is a replacement of a part of a deduc-
tion of the form

D1

A1

D2

A2

A1 ∧ A2
∧I)

Ai
(∧E)

D3

(where i = 1 or i = 2) by
Di

Ai

D3.

∨-reduction step A ∨-reduction step is a replacement of a part of a deduc-
tion of the form

D0

Ai

A1 ∨ A2
(∨I)

1
[A1]
D1

C

2
[A2]
D2

C
C

(∨E − 1 − 2)

D3

(where i = 1 or i = 2) by
D0

Ai

Di

C
D3.
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This is the step if both discharged assumptions actually occur. If at least one
does not occur, we have the following immediate simplifications: replacement
of a deduction of the form

D0

Ai

A1 ∨ A2
(∨I) D1

C

2
[A2]
D2

C
C

(∨E − 1 − 2)

D3

by
D1

C
D3

or of the form

D0

Ai

A1 ∨ A2
(∨I)

1
[A1]
D1

C
D2

C
C

(∨E − 1 − 2)

D3

by
D2

C
D3.

We would like to reduce deductions as before by eliminating cut formulas,
where a cut formula is the conclusion of an I-rule which is also the major (left)
premise of an E-rule. If we only had to consider ∧-reductions (along with
⊃-reductions), there would be no problem: each ∧-reduction step actually
reduces the size of the deduction, so we would only have to reduce a cut
formula of maximum rank with no cut formulas of maximum rank above it
(or its minor premise, if any), and Theorem 1 would be proved as before.
But with ∨ in the picture, this is not enough. For consider the following
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deduction of (A ⊃ B) ∨ (A ⊃ C), A 
 B ∨ C:

(A ⊃ B) ∨ (A ⊃ C)

3
[A ⊃ B]

1
[A]

B
(⊃ E)

B ∨ C
(∨I)

A ⊃ B ∨ C
(⊃ I − 1)

4
[A ⊃ C]

2
[A]

C
(⊃ E)

B ∨ C
(∨I)

A ⊃ B ∨ C
(⊃ I − 2)

A ⊃ B ∨ C
(∨E − 3 − 4)

A
B ∨ C.

(⊃ E)

This deduction contains no cut formulas, but we would like to reduce it to

(A ⊃ B) ∨ (A ⊃ C)

1
[A ⊃ B] A

B
(⊃ E)

B ∨ C
(∨I)

2
[A ⊃ C] A

C
(⊃ E)

B ∨ C
(∨I)

B ∨ C.
(∨E − 1 − 2)

To carry out this deduction, we need to consider segments. In the first
deduction, the segments (there are two of them) contain the formula A ⊃
B∨C; in the second, they contain B∨C. The segments in the first deduction
are maximum segments because their first formulas are conclusions of an I-
rule and their last formulas are major (left) premises for an E-rule. Here is
the definition:

Definition 3 A sequence of formulas C1, C2, . . . , Cn is a segment if they are
all the same formula and, for i = 1, . . . , n − 1, Ci is a minor premise for
an inference by (∨E) for which Ci+1 is the conclusion. The segment is a
maximum segment if C1 is the conclusion of an I-rule and Cn is the major
(left) premise of an E-rule. Note that a cut formula is a maximum segment
of length 1.

To deal with maximum segments of length two or more, we use the fol-
lowing reduction step:

∨E-reduction step A ∨-reduction step is a replacement of a part of a de-
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duction of the form

D0

A ∨ B

1
[A]
D1

C

2
[B]
D2

C
C

(∨E − 1 − 2)
(D4)

E
R

D4

where R is an E-rule with C as its major (left) premise and (D4) as the
deduction(s) of the minor premise(s), if any, by

D0

A ∨ B

1
[A]
D1

C (D4)

E
R

2
[B]
D2

C (D4)

E
R

E
(∨E − 1 − 2)

D4.

We can now define normal deductions for TM:

Definition 4 A normal deduction is one which cannot be further reduced;
i.e., a deduction in which there are no maximum segments.

Theorem 4 (Normalization) Every deduction in TM can be reduced to
a normal deduction with the same undischarged assumptions and the same
conclusion.

Proof This is a triple induction, first on the maximum rank of any max-
imum segment, second on the maximum length of any maximum segment
of maximum rank, and finally on the number of maximum segments with
that maximum rank and maximum length. Reduction steps are applied in
the following order: first, ∨E-reduction steps are applied to maximum seg-
ments of maximum rank and of length greater than one starting with those
of maximum length. Once all maximum segments of maximum rank have
length one (and so are cut formulas), reduction steps are applied to those cut
formulas of maximum rank for which there is no cut formula with maximum
rank above them or above any minor premise for the inference for which they
are major premises. Each reduction step reduces the deduction to one that
precedes it in the induction, and so the process must terminate in a normal
deduction with the same undischarged assumptions and conclusion.
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Theorem 5 (Consistency) There is no proof whose conclusion is an
atomic formula.

Proof Similar to the proof of Theorem 2, where we note that the left branch
of a deduction ending in an atomic formula consists entirely of E-rules, and
although (∨E) can discharge assumptions, it cannot discharge an assumption
over the left premise.

Corollary 5.1 Not 
 ⊥.

Proof ⊥ is an atomic formula.

Theorem 6 (Subformula property) Every formula occurring in a nor-
mal deduction is a subformula of the conclusion or of one of the undischarged
assumptions.

Proof Similar to the proof of Theorem 3.

Theorem 7 (Separation property) In any normal deduction, the only
rules which occur are those whose corresponding connective occurs in an
undischarged assumption or in the conclusion.

Proof Similar to the proof of Theorem 6.

The system TM is not complete: not all tautologies are theorems.

Theorem 8 (Disjunction property) If Γ is any set of assumptions in
which there is no occurrence of ∨, and if

Γ 
 A ∨ B,

then
Γ 
 A or Γ 
 B.

Proof Let D be a normal deduction of Γ 
 A ∨B. Since ∨ does not occur
in any undischarged assumption, the conclusion cannot be the subformula of
any assumption, so D cannot have a left branch consisting entirely of E-rules.
Hence, the last inference of D must be an I-rule. The only possible such rule
is (∨I), and if that last inference is removed we have a deduction which gives
us the conclusion of the theorem.
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Corollary 8.1 There is a formula A for which not 
 ¬A ∨ A.

Proof Let A be any atomic formula distinct from ⊥. By Theorem 5, not

 A. Now suppose there is a normal deduction of 
 ¬A. Then the last

inference is by (⊃I), and the premise is a normal deduction of A 
 ⊥. By
Theorem 6, every formula of this deduction must be a subformula of A or of
⊥, and since both are atomic, this means that no other formula can occur in
the deduction. Such a deduction is impossible.

The system TM can be strengthened so that all tautologies become prov-
able, and it turns out that adding a single rule is sufficient. The rule is as
follows:

Rule (⊥C)
[¬A]
⊥
A.

Definition 5 The system TK is defined by adding to the system TM the
rule (⊥C). That A can be deduced in TK from Γ will be indicated by

Γ 
 TKA

when it is necessary to indicate the system.

A proof that every tautology is a theorem of TK will be given later. For
now, here is a proof that 
 TK¬A ∨ A:

2
[¬(¬A ∨ A)]

2
[¬(¬A ∨ A)]

1
[A]

¬A ∨ A
(∨I)

⊥ (¬E)

¬A
(¬I − 1)

¬A ∨ A
(∨I)

⊥ (¬E)

¬A ∨ A.
(⊥C − 2)

Remark 1 Note that in system TM, it is not true that any formula follows
from a contradiction. There is a logic which enjoys many of the properties of
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TM but in which any formula follows from a contradiction, it is the system
TJ. It is formed by adding to system TM the rule (⊥J):

⊥
A.

This is a special case of rule (⊥C) in which the discharged assumption does
not actually occur. It is sufficient to take rule (⊥J) in the special case that A
is atomic, since the general case can be proved as a derived by an induction on
the number of connectives and quantifiers in the conclusion. Then, because
the conclusion of rule is atomic and there is no discharged assumption, adding
this rule to TM does not affect normalization or any of its consequences.

Remark 2 Normalization of TK is another matter, since the conclusion of
rule (⊥C) cannot be restricted to being atomic: it is not possible to break
an inference by (⊥C) whose conclusion is A ∨ B down into inferences by the
same rule whose conclusions are A or B. There are two solutions to this
problem.

1. Remove ∨ from the list of postulated connectives and to define A ∨ B
to be an abbreviation for ¬A ⊃ B (which has the same truth table).
(It would also be possible to define A ∧ B to be an abbreviation for
¬(A ⊃ ¬B), which has the same truth table, but this is not strictly
necessary.) If the only primitive connectives are ⊃ and ∧, then it is
possible to restrict (⊥C) to atomic conclusions and prove the general
case by induction on the structure of the conclusion. Since the con-
clusion of the rule can now be assumed to be atomic, adding this rule
to TM does not affect normalization or its consequences. This is the
approeach of [3, Chapter III].

2. Pushing inferences by (⊥C) down to the bottom of a deduction and
combining adjacent occurrences into one. This second method works
even if ∨ is a primitive connective. The method is to transform a
deduction of the form

1
[¬A]
D1

⊥
A

(⊥C − 1)
(D2)

B,
R
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where A is a premise for an inference by rule R and (D2) is (are) the
deduction(s) (if any) of the other premise(s) for the inference by R,
into

2
[¬B]

1
[A] (D2)

B
R

⊥ (¬E)

¬A
(¬I − 1)

D1

⊥
B,

(⊥C − 2)

provided that R does not discharge any assumptions in D1, and other-
wise into

2
[¬B]

1
[A] (D2)

B
R

⊥ (¬E)

¬A
(¬I − 1)

D1

⊥
A

(⊥C − v)
(D2)

B
R

B,
(⊥C − 2)

where the discharge at the first inference by R is vaduous. This method
will push down to the bottom of a deduction all inferences by (⊥C)
which discharge an assumption nonvacuously, but it is necessary to be
careful about the order of reductions, see [4, Theorem 4]. In what
follows, we shall assume that this second method is used to normalize
TK.

Remark 3 System TK can also be formulated by adding a rule to TJ. The
rule is one of

[¬A]
A
A or

[A ⊃ B]
A
A.

On normalizing systems with these rules, see [5].

System TM is known as minimal logic, system TJ is known as intuition-
istic logic, and system TK is known as classical logic.
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5 System LM for proof searches in TM

So far, the proof trees have involved formulas. But if we are searching for
a proof, it is more convenient to write down the premises as well as the
conclusion we are trying to prove.

For example, suppose we are searching for a proof of

A ⊃ B, B ⊃ C 
 A ⊃ C.

Assuming that we are working in TM, we can assume that we are searching
for a normal deduction. Then the last inference must be by (⊃I), and so to
obtain the premise we would need a normal deduction of

A ⊃ B, B ⊃ C, A 
 C.

Since we don’t know what formula C is, we must allow for the possibility of
its being atomic, so we cannot assume that the last inference of this normal
deduction is an I-rule; we have to assume that it is an E-rule. This would
mean that the left branch consists entirely of inferences by E-rules, and by
Theorem 7, these inferences must all be by (⊃E). It follows that the top of
the left (main) branch is not discharged, and so it must be either A ⊃ B or
B ⊃ C. Suppose it is B ⊃ C; then the normal deduction looks like this:

B ⊃ C
D1

B
C

(⊃ E)

D2

C,

where the undischarged assumptions of D1 and D2 are among A ⊃ B and A
and that C is an undischarged assumption for D2. This means that we need
proofs of

A ⊃ B, A 
 B and A ⊃ B, A, C 
 C.

The second of these is trivial, so D2 can be the one-step deduction consisting
of C. However, we need a normal deduction of the first of these. Again, we
must assume that the left branch consists entirely of inferences by (⊃E), so
the top of the left branch must be A ⊃ B or B ⊃ C. Suppose it is A ⊃ B.
By the above reasoning, we need proofs of

A 
 A and A, B 
 A.
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Both of these are trivial, and we are led to the deduction of Example 5.
This shows that when we are searching for a deduction of

Γ, A ⊃ B 
 C,

we may need to search for deductions of

Γ, A ⊃ B 
 A and Γ, B 
 C.

We normally will not want to repeat each time the reasoning we used above
to justify this step.

For this purpose, let us consider a system in which the steps of proofs are
not formulas, but statements of the form

Γ � A.

We will want operational rules in pairs, corresponding to the pairs of rules in
the natural deduction systems. But we will also need some structural rules to
cover the assumptions we have been making about natural deduction proofs.
It turns out that the structural rules are easier to formulate if we now take
sequences of assumptions instead of sets. So until further notice, assume that
Γ, ∆, and Θ are sequences of formulas. We will refer to

Γ � A

as a sequent. (Many authors use Γ → A for this sequent; the notation used
here is due to H. B. Curry [1]).

For the structural rules, we need one ((*C), also called exchange) which
tells us that the order of assumptions does not matter:

Γ, A, B, Θ � C
Γ, B, A, Θ � C.

Since all this rule does is to change the order of the formulas on the left,
we shall often ignore this order and this rule in what follows. We need one
((*K), also called weakening) which allows us to add an assumption:

Γ � C
Γ, A � C.
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We need one ((*W), also called contraction) which tells us that the number
of times we make an assumption does not matter:

Γ, A, A � C
Γ, A � C.

And finally, we need one (Cut) which tells us that � is transitive:

Γ � A Γ, A � C
Γ � C.

For the operational rules, those corresponding to the I-rules are fairly
obvious:

Rule (∧*)
Γ � A Γ � B

Γ � A ∧ B,

Rule (∨*)
Γ � A

Γ � A ∨ B,
Γ � B

Γ � A ∨ B,

Rule (⊃*)
Γ, A � B

Γ � A ⊃ B.

Corresponding to the E-rules, we assume (as above) that we are dealing
with the given formula at the top of the major (left) branch. The rules are

Rule (*∧)
Γ, A � C

Γ, A ∧ B � C,
Γ, B � C

Γ, A ∧ B � C,

Rule (*∨)
Γ, A � C Γ, B � C

Γ, A ∨ B � C,

Rule (*⊃)
Γ � A Γ, B � C
Γ, A ⊃ B � C.
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Note that the left premise for (*⊃) is missing the formula A ⊃ B on the
left, which we said was needed for the proof search. We needed this formula
in doing a proof search to allow for the possibility that the undischarged
assumption occurs more than once in the proof we are looking for. In stating
the rule, however, this formula is not needed; if this formula already occurs
on the left, it will occur in Γ, and rule (*W) can then be used to combine
the two occurrences into one.

This gives us pairs of operational rules which introduce formulas with the
given connective on the left and on the right of the sign ‘�’. The only rule
which ever removes a formula from one side or the other (without making
it part of a larger formula) is (Cut). As we shall see below, rule (Cut)
is redundant and can be eliminated. We are therefore interested in proofs
without this rule; these proofs are called cut-free. Proof searches can be
conducted by proceeding backwards from the conclusion using cut-free proofs.

Definition 6 The system LM is based on sequents of the form Γ � A, which,
in turn, are based on the formulas of system TM. The axioms of LM are all
sequents of the form

A � A.

The structural rules are (*C), (*K), (*W), and (Cut). The operational rules
are (*∧), (∧*), (*∨), (∨*), (*⊃), and (⊃*). A proof in which rule (Cut) does
not occur is called cut-free.

Note the derived rules for negation:

(*¬) Γ � A Γ,⊥ � C
Γ,¬A � C

(*¬) Γ, A � ⊥
Γ � ¬A

Theorem 9 If Γ is any sequence of assumptions, and if

Γ � C(1)

in LM, then
Γ 
 TMC.(2)

Proof By induction on the proof of (1).
Basis: (1) is an axiom. Then Γ is just C, and (2) is the one-step deduction

C.
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Induction step: We have cases by the last rule of the deduction of (1). The
cases for the structural rules are trivial by our assumptions about deductions
in TM. Even the case of (Cut) is trivial, since we automatically assume that
‘ 
 ’ is transitive.

Case (*∧). Γ is Γ′, A1 ∧ A2, and the premise for the inference is

Γ′, Ai � C,

where i = 1 or i = 2. By the induction hypothesis of induction, there is a
deduction D in TM of

Ai

D
C,

where all undischarged assumptions are in Γ′. The desired deduction of (2)
is

A1 ∧ A2

Ai
(∧E)

D
C.

Case (∧*). Here, C is A ∧ B, and the premises are

Γ � A and Γ � B.

By the induction hypothesis, there are deductions in TM D1 and D2 whose
undischarged assumptions are all in Γ of

D1

A and
D2

B.

Then the desired deduction of (2) is

D1

A
D2

B.
A ∧ B.

(∧I)

Case (*∨). Here, Γ is Γ′, A ∨ B, and the premises are

Γ′, A � C and Γ′, B � C.

by the induction hypothesis, there are deductions in TM whose undischarged
assumptions are in Γ′ of

A
D1

C and

B
D2

C.
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Then the desired deduction of (2) is

A ∨ B

1
[A]
D1

C

2
[B]
D2

C
C.

(∨E − 1 − 2)

Case (∨*). Here C is A1 ∨ A2, and the premise is

Γ � Ai,

where i = 1 or i = 2 By the hypothesis of induction, there is a deduction in
TM whose undischarged assumptions are in Γ of

D
Ai.

The desired deduction of (2) is

D
Ai

A1 ∨ A2.
(∨I)

Case (*⊃). Here Γis Γ′, A ⊃ B, and the premises are

Γ′ � A and Γ′, B � C.

By the hypothesis of induction, there are deductions in TM whose undis-
charged assumptions (except as indicated) are in Γ′ of

D1

A and

B
D2

C.

The desired deduction of (2) is

A ⊃ B
D1

A
B

(⊃ E)

D2

C.
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Case (⊃*). Here C is A ⊃ B, and the premise is

Γ, A � B.

By the induction hypothesis, there is a deduction in TM whose undischarged
assumptions (except for the one indicated) are in Γof

A
D
B.

Then the desired deduction of (2) is

1
[A]
D
B

A ⊃ B.
(⊃ I − 1)

Theorem 10 If Γ is any sequence of formulas, and if there is a normal
deduction D in TM of (2), then there is a cut-free proof of (1).

Proof By induction on the normal deduction D.
Basis: D is the one-step deduction C. Then (1) is the axiom C � C.
Induction step: We have two main cases:
Case 1. The last rule of the inference is an I-rule. We have cases by the

rule.
Subcase (∧I). Then C is A ∧ B and D is

D1

A
D2

B
A ∧ B,

(∧E)

and the undischarged assumptions of D1 and D2 are all in Γ. By the induction
hypothesis, D1, and D2, there are cut free proofs of

Γ � A and Γ � B.

The cut-free proof of (1) is

Γ � A Γ � B
Γ � A ∧ B.

(∧*)
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Subcase (∨I). Here C is A1 ∨ A2 and D is

D′

Ai

A1 ∨ A2,
(∨I)

where i = 1 or i = 2 and the undischarged assumptions are all in Γ. By the
induction hypothesis, there is a cut-free proof of

Γ � Ai,

and the cut-free proof of (1) is

Γ � Ai

Γ � A1 ∨ A2.
(∨*)

Subcase (⊃I). Here C is A ⊃ B, and D is

1
[A]
D1

B
A ⊃ B,

(⊃ I − 1)

where all the undischarged assumptions are in Γ. By the induction hypoth-
esis, there is a cut-free proof of

Γ, A � B,

and the desired cut-free proof of (1) is

Γ, A � B
Γ � A ⊃ B.

(⊃ *)

Case 2. The last rule of D is an E-rule. Then the main (left) branch
of D consists entirely of inferencess by E-rules, and the top formula of that
branch, which is the major premise of an E-rule, is not discharged. The cases
are by the E-rule of which that formula is the major premise.

Subcase (∧E). D is
A1 ∧ A2

Ai
(∧E)

D1

C,
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where i = 1 or i = 2. By D1 and the induction hypothesis, there is a cut-free
proof of

Γ′, Ai � C,

where Γ′ consists of all the assumptions of Γ except possibly A1 ∧ A2 (de-
pending on whether this formula occurs elsewhere as an undischarged as-
sumption). By (*∧), we get

Γ′, A1 ∧ A2 � C.

If this is not (1), then Γ′ is the same as Γ, and we get (1) by an inference by
(*W).

Subcase (∨E). Because of reduction step ∨E, we may assume without loss
of generality that this is also the last inference in the main (left) branch of
the deduction, so D is

A ∨ B

1
[A]
D1

C

2
[B]
D2

C
C.

(∨E − 1 − 2)

By the induction hypothesis, there are cut-free proofs of

Γ′, A � C and Γ′, B � C,

where Γ′ consists of all of Γ except possibly A ∨ B (depending on whether
A ∨ B occurs elsewhere in D as an undischarged assumption). By (∨*), we
get

Γ′, A ∨ B � C.

If this is not (1), then Γ′ is the same as Γ, and we get (1) by an inference by
(*W).

Subcase (⊃E). Then D is

A ⊃ B
D1

A
B

(⊃ E)

D2

C.
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by D1, D2 and the induction hypothesis, there are cut-free proofs of

Γ′ � A and Γ′, B � C,

where Γ′ consists of all of Γ except possibly A ⊃ B (depending on whether
A ⊃ B occurs elsewhere in D as an undischarged assumption). By (*⊃), we
get

Γ′, A ⊃ B � C.

If this is not (1), then Γ′ is the same as Γ, and we get (1) by an inference by
(*W).

Theorem 11 (Cut elimination) Any proof in LM can be converted into a
cut-free proof with the same conclusion.

Proof Suppose (1) is provable in LM. Then by Theorem 9 there is a deduc-
tion in TM of (2). By Theorem 4, there is a normal deduction in TM of (2).
Hence, by Theorem 10, there is a cut-free proof of (1).

This means that a proof search in TM can be carried out in LM using all
the rules except (Cut). Let us see some examples.

Example 7 Consider the distribution of ∧ over ∨:

� (A ∧ (B ∨ C)) ⊃ ((A ∧ B) ∨ (A ∧ C)).

If there is a proof of this, the last inference must be by (⊃*), and the premise
must be

A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C).

The last inference in a proof of this might be either (*∧) or (∨*). Let us
try the first. If we recall that (*∧) corresponds to the natural deduction
rule (∧E), we may note that it involves eliminating a conjunction used as
an undischarged assumption, and there is no reason to suppose that there
may not be more than one such occurrence of the same conjunction as an
undischarged assumption, we see that we want to look at

A∧(B∨C), A � (A∧B)∨(A∧C) or A∧(B∨C), B∨C � (A∧B)∨(A∧C).
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(This reasoning also applies whenever we proceed backward through an in-
ference by (*⊃) or (*∨).) Let us try the second assuming that B ∨ C has
been introduced by (*∨); the premises are

A∧(B∨C), B∨C, B � (A∧B)∨(A∧C) and A∧(B∨C), B∨C, C � (A∧B)∨(A∧C).

We now have two branches connected by ‘and’, so we will have to follow
both. Let us, in each case, try going backward through (∨*), but making a
different choice in each case. Then the premises are, respectively,

A ∧ (B ∨ C), B ∨ C, B � A ∧ B and A ∧ (B ∨ C), B ∨ C, C � A ∧ C.

Now let us assume that each of these comes from (*∧), so that the premise
are

A ∧ (B ∨C), B ∨C, A, B � A ∧B and A ∧ (B ∨C), B ∨C, A, C � A ∧C.

Finally, let us assume that each of these comes by (∧*), so that there are
two premises for each. For the first the premises are

A ∧ (B ∨ C), B ∨ C, A, B � A and A ∧ (B ∨ C), B ∨ C, A, B � B,

whereas for the second they are

A ∧ (B ∨ C), B ∨ C, A, C � A and A ∧ (B ∨ C), B ∨ C, A, C � C.

Each of these last four sequents can be obtained from an axiom by repeated
inferences by (*K), so we have found our proof. Eliminating unnecessary
formulas, it is the following:

A � A
A, B � A

(∗K) B � B
A, B � B

(∗K)

A, B � A ∧ B
(∧*)

A, B � (A ∧ B) ∨ (A ∧ C)
(∨*)

A � A
A, C � A

(∗K) C � C
A, C � C

(∗K)

A, C � A ∧ C
(∧*)

A, C � (A ∧ B) ∨ (A ∧ C)
(∨*)

A, B ∨ C � (A ∧ B) ∨ (A ∧ C)
(*∨)

A ∧ (B ∨ C), B ∨ C � (A ∧ B) ∨ (A ∧ C)
(*∧)

A ∧ (B ∨ C), A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C)
(*∧)

A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C)
(*W)

� (A ∧ (B ∨ C)) ⊃ ((A ∧ B) ∨ (A ∧ C)).
(⊃ *)
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If we convert this into a natural deduction proof, we get the following:

3
[A ∧ (B ∨ C)]

B ∨ C
(∧E)

3
[A ∧ (B ∨ C)]

A
(∧E) 1

[B]

A ∧ B
(∧I)

(A ∧ B) ∨ (A ∧ C)
(∨I)

3
[A ∧ (B ∨ C)]

A
(∧E) 2

[C]

A ∧ C
(∧I)

(A ∧ B) ∨ (A ∧ C)
(∨I)

(A ∧ B) ∨ (A ∧ C)
(∨E − 1 − 2)

(A ∧ (B ∨ C)) ⊃ ((A ∧ B) ∨ (A ∧ C)).
(⊃ I − 3)

Example 8 Consider the sequent

� ¬A ⊃ (A ⊃ B).

This must come by (⊃*) from

¬A � A ⊃ B,(3)

which probably comes by the same rule from

¬A, A � B.

This last can only come by (*¬) from

¬A, A � A and A,⊥ � B.

The first of these can come from an axiom by (*K), but not the second, so
no proof can be obtained this way. The only other alternative is to try to
get (3) by (*¬) from

¬A � A and ⊥ � A ⊃ B,

but the first of these is impossible, since we would have to get it by (*¬)
whose first premise is the same formula. So there is no proof in TM of this.

Remark 4 A system LJ corresponding to TJ can be formed by adding to
LM the rule (⊥*):

Γ � ⊥
Γ � A.
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To prove Theorem 9 for LJ and TJ, we need to add a case for this rule; apply
rule (⊥J) to the induction hypothesis. To prove Theorem 10, add a Case 3
for when the last inference of D is by (⊥J); in this case apply rurle (⊥*) to
the induction hypothesis. It follows that Theorem 11 applies to LJ as well as
LM. In LJ, Example 8 would work, since A,⊥ � B could come by (⊥*) from
A,⊥ � ⊥, which does follow from an axiom by (*K). Hence, the formula of
this example can be proved in LJ but not in LM.

6 System LK for proof searches in TK

The L-rule which corresponds to (⊥C) is

Γ,¬A � ⊥
Γ � A.

A rule like this would appear to interfere with the backward proof search that
works so well in LM and LJ. For this reason, we formulate LK a different
way: we allow sequences of more than one formula on the right hand side of
the symbol ‘�’. At first, this must seem like a strange thing to do, but it is
a trick that works.

Definition 7 The system LK is uses sequents of the form

Γ � ∆,

where both Γ and ∆ are sequences of formulas. The axioms are the same as
those for LM. The rules are as follows (where Θ is also a sequence of formulas
and i = 1 or i = 2):

(*C) Γ, A, B, Θ � ∆
Γ, B, A, Θ � ∆

(C*) Γ � ∆, A, B, Θ
Γ � ∆, B, A, Θ

(*K) Γ � ∆
Γ, A � ∆

(K*) Γ � ∆
Γ � A, ∆

(*W) Γ, A, A � ∆
Γ, A � ∆

(W*) Γ � A, A, ∆
Γ � A, ∆

(*∧) Γ, Ai � ∆
Γ, A1 ∧ A2 � ∆

(∧*) Γ � A1, ∆ Γ, A2, ∆
Γ � A1 ∧ A2, ∆
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(*∨) Γ, A1 � ∆ Γ, A2 � ∆
Γ, A1 ∨ A2 � ∆

(∨*) Γ � Ai, ∆
Γ � A1 ∨ A2, ∆

(*⊃) Γ � A, ∆ Γ, B � ∆
Γ, A ⊃ B � ∆

(⊃*) Γ, A � B, ∆
Γ � A ⊃ B, ∆

(⊥*) Γ � ⊥, ∆
Γ � C, ∆

(Cut) Γ � A, ∆ Γ, A � ∆
Γ � ∆.

Note the derived rules for negation:

(*¬) Γ � A, ∆ Γ,⊥ � ∆
Γ,¬A � ∆

(¬*) Γ, A � ⊥, ∆
Γ � ¬A, ∆

Note also that we will largely ignore rule (C*) as we have been largely
ignoring (*C).

Remark 5 There are presentations of LK without the rule (⊥*). These are
usually systems in which ⊥ is not used at all, and it is possible to have a
void sequence on the right side. Thus, the sequent that we would represent
as Γ � ⊥ would, in such a system, be Γ � . In such a system, rule (⊥*) is a
special case of (K*). This rule may seem to violate the spririt of an L-system
that no formula ever disappear, but it does not really interfere with a proof
search going backward, since going backward one can always try replacing a
formula on the right by ⊥.

It is worth saying a word about the interpretation of these sequents. A
sequent of LM or LJ,

A1, A2, . . . , An � B,

is interpreted as being equivalent to the formula

A1 ∧ A2 ∧ . . . ∧ An ⊃ B.

A sequent of LK,
A1, A2, . . . , An � B1, B2, . . . Bm,

is interpreted as being equivalent to the formula

A1 ∧ A2 ∧ . . . ∧ An ⊃ B1 ∨ B2 ∨ . . . ∨ Bm.
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Example 9 Proof in LM of � ¬A ∨ A:

A � A
A � ⊥, A

(K*)

� ¬A, A
(¬*)

� ¬A ∨ A, A
(∨*)

� ¬A ∨ A,¬A ∨ A
(∨*)

� ¬A ∨ A.
(W*)

Note that we need the extra formula on the right to make this proof work.

For the following theorem, we need the following definition: If Γ is a
sequence of formulas

A1, A2, . . . , An,

then Γ∨ is the formula
A1 ∨ A2 ∨ . . . ∨ An.

If n = 1, then Γ∨ is just Γ.

Theorem 12 If
Γ � ∆(4)

is provable in LK, then
Γ 
 TK∆∨.(5)

In particular, if
Γ � C

is provable in LK, then
Γ 
 TKC.

Proof The second sentence of the theorem follows from the first as a special
case. The first sentence is proved by induction on the proof of (4).

Basis: (4) is an axiom C � C. Then (5) is the one-step deduction C.
Induction step: Cases by the last rule in the proof of (4). If the rule is

any rule on the left except (*⊃), the proof is similar to the corresponding
case in the proof of Theorem 9.

Case (C*). Here ∆ is ∆1, B, A, ∆2, ∆∨ is ∆∨
1 ∨ B ∨ A ∨ ∆∨

2 , and the
premise is

Γ � ∆1, A, B, ∆2.
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By the induction hypothesis, there is a deduction in TK whose undischarged
assumptions are all in Γ of

D
∆∨

1 ∨ A ∨ B ∨ ∆∨
2 .

Reading ∆∨
1 ∨A∨B∨∆∨

2 as ((∆∨
1 ∨A)∨B)∨∆∨

2 , we can prove (5) as follows:

D
∆∨

1 ∨ A ∨ B ∨ ∆∨
2

1
[∆∨

1 ∨ A ∨ B]
D1

∆∨

2
[∆∨

2 ]

∆∨ (∨I)

∆∨,
(∨E − 1 − 2)

where D1 is

∆∨
1 ∨ A ∨ B

3
[∆∨

1 ∨ A]
D2

∆∨

4
[B]

∆∨
1 ∨ B

(∨I)

∆∨
1 ∨ B ∨ A

(∨I)

∆∨ (∨I)

∆∨,
(∨E − 3 − 4)

and where D2 is

∆∨
1 ∨ A

5
[∆∨

1 ]

∆∨
1 ∨ B

(∨I)

∆∨
1 ∨ B ∨ A

(∨I)

∆∨ (∨I)

6
[A]

∆∨
1 ∨ B ∨ A

(∨I)

∆∨ (∨I)

∆∨.
(∨E − 5 − 6)

Case (K*). Here ∆ is A, ∆1 and the premise is

Γ � ∆1.

By the hypothesis of induction, there is a deduction in TK all of whose
undischarged assumptions are in Γ of

D
∆∨

1
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Since ∆∨ is A ∨ ∆∨
1 , we get (5) as follows:

D
∆∨

1

∆∨.
(∨I)

Case (W*). Here ∆ is A, ∆1, ∆∨ is A ∨ ∆∨
1 , and the premise is

Γ � A, A, ∆1.

By the induction hypothesis, there is a deduction in TK all of whose undis-
charged assumptions are in Γ of

D
A ∨ A ∨ ∆∨

1 .

The proof of (5) is

D
A ∨ A ∨ ∆∨

1

2
[A ∨ A]

3
[A]

∆∨ (∨I)

4
[A]

∆∨ (∨I)

∆∨ (∨E − 3 − 4)

2
[∆∨

1 ]

∆∨ (∨I)

∆∨.
(∨E − 1 − 2)

Case (∧*). Here, ∆ is A1 ∧ A2, ∆1, so ∆∨ is (A1 ∧ A2) ∨ ∆∨
1 , and the

premises are

Γ � A1, ∆ and Γ � A2, ∆.

By the induction hypothesis, there are deductions in TK all of whose undis-
charged assumptions are in Γ of

D1

A1 ∨ ∆∨
1 and

D2

A2 ∨ ∆∨
1 .

The deduction of (5) is then as follows:

D1

A1 ∨ ∆∨
1

D2

A2 ∨ ∆∨
1

1
[A1]

3
[A2]

A1 ∧ A2
(∧I)

∆∨ (∨I)

4
[∆∨

1 ]

∆∨ (∨I)

∆∨ (∨E − 3 − 4)

2
[∆∨

1 ]

∆∨ (∨I)

∆∨.
(∨E − 1 − 2)
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Case (∨*). ∆ is A1 ∨A2, ∆1, so ∆∨ is (A1 ∨A2)∨∆∨
1 , and the premise is

Γ � Ai, ∆1,

where i = 1 or i = 2. By the induction hypothesis, there is a deduction in
TK all of whose undischarged assumptions are in Γ of

D
Ai ∨ ∆∨

1 .

The deduction of (5) is as follows:

D
Ai ∨ ∆∨

1 .

1
[Ai]

A1 ∨ A2
(∨I)

∆∨ (∨I)

2
[∆∨

1 ]

∆∨ (∨I)

∆∨.
(∨E − 1 − 2)

Case (*⊃). Here Γ is Γ1, A ⊃ B, and the premises are

Γ1 � A, ∆ and Γ1, B � ∆.

By the induction hypothesis, there are deductions in TK all of whose undis-
charged assumptions (except for B in the second one) are in Γ1 of

D1

A ∨ ∆∨ and

B
D2

∆∨.

Then the deduction of (5) is

D1

A ∨ ∆∨

A ⊃ B
1

[A]

B
(⊃ E)

D2

∆∨
2

[∆∨]

∆∨.
(∨E − 1 − 2)

Case (⊃*). ∆ is A ⊃ B, ∆1, so ∆∨ is (A ⊃ B) ∨ ∆∨
1 , and the premise is

Γ, A � B, ∆1.
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By the induction hypothesis, there is a deduction in TK all of whose undis-
charged assumptions (except the indicated occurrence of A) are in Γ of

A
D

B ∨ ∆∨
1 .

Then the deduction of (5) is

5
[¬∆∨]

2
[¬A]

1
[A]

⊥ (¬E)

B
(⊥C − v)

A ⊃ B
(⊃ I − 1)

∆∨ (∨I)

⊥ (¬E)

A
(⊥C − 2)

D
B ∨ ∆∨

1

3
[B]

A ⊃ B
(⊃ I − v)

∆∨ (∨I)

4
[∆∨

1 ]

∆∨ (∨I)

∆∨ (∨E − 3 − 4)

∆∨.
(⊥C − 5)

(Note that we have here two inferences by (⊥C) which discharge assumptions
nonvacuously, and one of them is not the last inference of the deduction.
This is because we cannot push the first of them pas the rules of D without
changing it, and this would complicate the presentation.)

Case (⊥*). ∆ is C, ∆1, so ∆∨ is C ∨ ∆∨
1 , and the premise is

Γ � ⊥, ∆1.

By the induction hypothesis, there is a deduction in TK all of whose undis-
charged assumptions are in Γ of

D
⊥ ∨ ∆∨

1 .

Then the deduction of (5) is

D
⊥ ∨ ∆∨

1

1
[⊥]

∆∨ (⊥C − v)

2
[∆∨

1 ]

∆∨ (∨I)

∆∨.
(∨E − 1 − 2)
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Case (Cut). The premises are

Γ � A, ∆ and Γ, A � ∆.

By the induction hypthesis, there are deductions in TK whose undischarged
assumptions (except for the indicated occurrence of A) are in Γ of

D1

A ∨ ∆∨ and

A
D2

∆∨.

The deduction of (5) is

D1

A ∨ ∆∨

1
[A]
D2

∆∨
2

[∆∨]

∆∨.
(∨E − 1 − 2)

Theorem 13 If there is a normal deduction D of

Γ 
 TKC

then there is a cut-free proof in LK of

Γ � C.

Proof Recall that we are normalizing TK by the second method of Remark
2. This means that we are assuming that a normal TK deduction has only
one inference by rule (⊥C) that discharges assumptions nonvaciously, and
that one is at the end of the deduction. This means that to the proof of
Theorem 10, we need only add cases for rule (⊥C), one vacuous and one
nonvacuous, and we can assume that the inference in the nonvacuous case is
the last of the deduction. The vacuous case can be handled as indicated in
Remark 4.

This means that for the nonvacuous case, D has the form

1
[¬C]
D1

⊥
C.

(⊥C − 1)
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Hence, by the hypothesis of induction, there is a cut-free proof in LK of

Γ,¬C � ⊥.(6)

To complete the proof, it is sufficient to prove that if there is a cut-free proof
in LK of (6), then there is a cut-free proof in LK of

Γ � C.(7)

To carry out the proof, we need some terminology: in any rule except (Cut),
the new formula introduced into the conclusion of the rule is the principal
formula, the formula(s) from the premise(s) which appear in the conclusion
only as part of the principal formula are the side formulas, and the formulas
in Γ and ∆ which are the same in premises and the conclusion are called
parameters. Note that any inference remains valid if the parameters are
changed. For example, in the rule (⊃I), the principal formula is A ⊃ B, the
side formulas are A and B, and the formulas in Γ and ∆ are parameters.
Also, in rule (*K), the main formula is A, there are no side formulas, and the
parameters are the formulas in Γ and ∆. Given a formula in the conclusion of
an inference, its immediate ancestors are defined as follows: (1) if the formula
is a principal formula, than any side formula is an immediate ancestor, and
(2) if the formula is a parameter, then a corresponding parameter in each
premise is an immediate ancestor. An immediate parametric ancestor is
defined using only (2) from the above definition. An ancestor (respectively
parametric ancestor) is the transitive closure of the relation of immediate
ancestor (respectively immediate parametric ancestor). A quasi-parametric
ancestor is defined similarly except that principal formulas and side formulas
of (*W*) and (*C*) are allowed. Note that a parametric or quasi-parametric
ancestor of a formula is identical to the formula.

Now let E1, E2, . . . , En be a proof of (6) in which the sequents Ei are so
ordered that each one except En is used exactly once as a premise for an
inference, and let Ei be

Γi, Ui � Vi, ∆i,

where Ui consists of the quasi-parametric ancestors of the indicated occur-
rence of ¬C in (6) and Vi consists of the quasi-parametric ancestors of the
indicated occurrence of ⊥ in (6). Let E ′

i be

Γi � C, ∆i.
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Since Γn is Γ and ∆i is the empty sequence of formulas, E ′
n is (7), so our

proof will be complete if we prove E ′
i for each i = 1, 2, . . . , n. This will be

proved by induction on i. The case for the basis will be distributed among
the cases for the induction step.

Case 1. Both Ui and Vi are void. Then Ei is Γi � ∆i, and E ′
i follows from

Ei by (K*).
Case 2. Ui and Vi are not both void, and Ei is an axiom. Then only one

of Ui and Vi is nonvoid.
Subcase 2.1. Ui is nonvoid, so Vi is void. Then Γi is void and ∆i is ¬C,

so Ei is ¬C � ¬C. Then E ′
i is � ¬C, C, which is proved as follows:

C � C
C � ⊥, C

(K∗)
� ¬C, C.

(¬*)

Subcase 2.2. Vi is nonvoid. Then Ui and ∆i are void, Vi consists of a
single occurrence of ⊥, and Γ also consists of ⊥, so that Ei is ⊥ � ⊥. Then
E ′

i is ⊥ � C, and its proof is as follows:

⊥ � ⊥
⊥ � C.

(⊥*)

Case 3. Ui and Vi are not both void, and Ei is obtained from Ej and
perhaps Ek by a rule for which all the formulas in Ui and Vi are parametric.
Then the same inference (with different parameters) will permit E ′

i to be
obtained from E ′

j and perhaps E ′
k.

Case 4. Ui and Vi are not both void, and Ei is obtained from Ej by a
structural rule whose principal constituent is in Ui or Vi. This inference only
changes the number of occurrences of formulas in Ui or Vi, so E ′

i is the same
as E ′

j or, if the number is changed from 0 to 1, E ′
i follows by one of (*K*)

from E ′
j.

Case 5. Ui and Vi are not both void, and Ei is obtained by an inference
by an operational rule for which the principal formula is in Ui or Vi. Since
the principal formula of an operational rule cannot be ⊥, it is not in Vi, but
must be in Ui. Since every formula in Ui is ¬C, the rule must be (*¬), and
there are two premises, say Ej and Ek. Let U ′

i be the formulas of Ui which
are not the principal formula of the inference. Then Ei is Γi, U

′
i ,¬C � Vi, ∆i.

The left premise, Ej, is Γi, U
′
i � C, Vi, ∆i, so Γj is Γi, Uj is U ′

i , Vj is Vi, and
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∆j is C, ∆i. It follows that E ′
j, which is Γj � C, ∆j, is Γi � C, C, ∆i, so that

E ′
i, which is Γi � C, ∆i, can be obtained from E ′

j by an inference by (W*).

Theorem 14 (Cut elimination) Any proof in LK can be replaced by a
cut-free proof of the same conclusion.

Proof Like the proof of Theorem 11.

Let us now look at some examples of proof search in LK.

Example 10 Consider

� ((A ⊃ B) ⊃ A) ⊃ A.

This might come by (⊃*) from

(A ⊃ B) ⊃ A � A.

This, in turn, must come by (*⊃) from

(A ⊃ B) ⊃ A � A ⊃ B, A and A � A.

The second of these is an axiom, while the first can come by (⊃*) from

(A ⊃ B) ⊃ A, A � B, A,

and this can come from an axiom by (*K*). Thus, we have the following
proof:

A � A
A � B, A

(K*)

� A ⊃ B, A
(⊃ *)

A � A

(A ⊃ B) ⊃ A � A
(* ⊃)

� ((A ⊃ B) ⊃ A) ⊃ A.
(⊃ *)

Note that this proof depends on having more than one formula on the right
side, and so it will not work in either LJ or LM.

Example 11 Consider
A ∨ B � A ∧ B.

41



This might come by (∧*) from

A ∨ B � A and A ∨ B � B.

Each of these might come from (*∨). The premises for the first are

A � A and B � A,

while the premises for the second are

A � B and B � B.

Although two of these four are axioms, the other two cannot be axioms.
Hence this cannot be proved in LK. And we would not expect it to be provable
in LK, since there is a truth assignment which makes the left side true and
the right side false. We can assign T to A and F to B, for example. And this
assignment will falsify the branch of our search leading to A � B.

We can now prove that every tautology is provable in LK (and hence in
TK). We will do this by proving that if a sequent Γ � ∆ is not provable in
LK, then there is a truth assignment which falsifies it in the sense of assigning
T to every formula in Γ and F to every formula in ∆. It will follow that if
any assignment which assigns every formula in Γ the value T also assigns T
to at least one formula in ∆, then Γ � ∆ must be provable.

So suppose Γ � ∆ is not provable in LK. Then there is a branch of our
proof search which ends in a sequent in which all the “atomic” letters appear,
but none appears on both sides. Assign T to every “atomic” letter on the left
of that sequent and F to every “atomic” letter on the right, but always assign
F to ⊥. By the truth tables, this will assign T to every formula on the left
and F to every formula on the right. This assignment falsifies that sequent.
An examination of the rules shows that if an assignment falsifies a premise for
any inference, it can be extended to one that falsifies the conclusion. Then
this assignment will falsify Γ � ∆. This proves

Theorem 15 (Completeness) If there is no assignment of truth values
to the formulas of a sequent which falsifies the sequent, then the sequent is
provable in LK.

Corollary 15.1 Every tautology is provable in LK (and hence also in TK).
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