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Abstract

This paper represents the start of an inquiry into whether Gödel’s
Incompleteness Theorem and related results have applications outside
of the field of mathematical logic. In particular, it raises the question
of whether these results imply that there are limits to what theories
can be completely and correctly characterized by means of rules. After
an introduction to the theorem and an outline of its proof, the paper
goes on to raise questions about whether the ideas involved can be
applied to philosophy (philosophy of science and ethics) and to the
law.

In 1930, the Austrian mathematician and logician Kurt Gödel proved
one of the deepest results in mathematical logic, his Incompleteness Theorem.
Gödel’s original paper is [4]; a modern technical introduction is [12]; a guide in
the form of logical puzzles is [11]. Roughly speaking, this theorem states that
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for any strictly formal system that is strong enough to include elementary
arithmetic (the elementary theory of the whole numbers), there is a sentence
which cannot be proved but which is nevertheless true. This result implies
that there is no set of formal rules which we humans can use to completely
characterize the true sentences of elementary arithmetic or which any devices
that we can build can use for the same purpose. In the years following the
publication of Gödel’s result, a number of other results appeared that seem
to support the idea that there are limits to what can be characterized by
strictly formal rules. For example, there is the result that it is not possible
to decide whether a computer program run with given input will stop or go
into an infinite loop; this result is known as the undecidability of the halting
problem, originally proved in [13]. (For modern introductions, see [1, Chapter
5, Theorem 2.2] and [2, Chapter 4, Theorem 2.1 and Chapter 6, Theorem
4.1].) One way of looking at these results is that certain programs are too
complex to be calculated at all by an idealized computer, even one with
unlimited memory and unlimited time. These results are generally taken
by mathematical logicians and theoretical computer scientists to show that
there are limits to what can be done using formal rules in a strictly formal
setting.

In this paper I propose to investigate the possibility that this kind of
incompleteness applies to systems of rules that are not completely formalized.
The history of the formalization of mathematics is one of examining the
arguments used in proofs and making explicit all the assumptions on which
they depend. The form of many informal deductive arguments seems to
imply that they could be formalized by this process, which, in turn, suggests
that the theories of which they are a part may also be incomplete in much the
sense of Gödel’s Incompleteness Theorem. It also suggests that there may
be limits on the use of rules to characterize ideas even if the rules are not
being used in a completely formal way. My purpose here is to consider the
possible effect such incompleteness might have for the use of such theories.

Among the cases I propose to examine are the following:

1. Philosophical arguments. Most philosophical arguments are deductive,
but not completely formalized. This means that it may be important
to consider the possibility that the basic axioms and rules being used
in these deductive arguments may not completely characterize the sub-
jects involved. Among the areas of philosophy which may be affected
are:



(a) The Philosophy of Science

(b) Ethics

2. Law. Law, like philosophy, involves arguments that have a deductive
character but are not completely formalized. These arguments also
differ in important respects from arguments in such fields as mathe-
matics. My purpose here is to begin an inquiry into whether the ideas
of Gödel’s Incompleteness Theorem and related results may possibly
have applications to the law.

The paper will open with an introduction to Gödel’s Incompleteness The-
orem itself. To make things easier for the reader, I will start in §1 with an
outline of an easier proof, that of the undecidability of the halting problem.
To present an outline of the proof of Gödel’s Incompleteness Theorem itself,
I need to give a complete definition of a system to which it applies: first-
order arithmetic. I do this in §2, and then in §3 I will present the outline
of the proof of the theorem itself. In §4 I will comment on the the possible
application of the theorem to theories which are not strictly formalized. §5
I will consider an application of these ideas to philosophy, and in §6 I will
consider applications to law.

I would like to thank Roger Hindley for his helpful comments and sug-
gestions.

1 The Undecidability of the Halting Problem

Imagine that we have a computer built like existing computers and working
on the same principles but which has unlimited time and space (including
unlimited memory) at its disposal. It is generally accepted in mathemat-
ical logic and theoretical computer science that the functions that can be
computed by such a computer are precisely the partial recursive functions.1

Now in our idealized computer, as in any existing computer, everything
is coded by numbers. Every input or output is stored simply as a number.

1This set of functions can also be described as the set of functions computable by a
Turing machine, or by the set of all lambda-definable functions. It is not necessary for
this paper to understand how any of these classes of functions are defined; it is enough to
know that they have all been proved to be the same class of functions, and this is part of
the reason that each of these classes of functions is now regarded as the class of functions
that can be computed by our idealized computer.



Every program or file can be thought of as a finite sequence of numbers,
and there are well-known ways in mathematics for coding finite sequences of
numbers as single numbers.

Theorem 1 There is no program that will determine whether running a
given program with a given input of data will terminate or go into an in-
finite loop.

Outline of proof2 Suppose there is such a program, H(x,y) so that H(m,n)
returns True if running program m with input data n terminates and returns
False otherwise.

Consider the following program:

1 Input X

2 If H(X,X) then goto 2

3 Output True

4 End

This program runs as follows: it first reads the number X from the input.
Then, in line 2, it runs the program H(X,X). If H(X,X) returns True, it is
directed to go to line 2, the same line is has just been executing, and so is
clearly put into an infinite loop. If, on the other hand, H(X,X) returns False,
the program executes the next line, which means that it outputs True and
then proceeds to the next line and ends (halts execution). So this program
goes into an infinite loop if H(X,X) outputs True and outputs False and
halts if H(X,X) outputs False.

This program is identified with a number, say N. Then we clearly have,
for every number X,

H(N, X) = True ⇔ H(X, X) = False

Putting N for X,
H(N, N) = True ⇔ H(N, N) = False

This is a contradiction, since it implies True = False.
Because this contradiction follows from the assumption that there is a

program H(x,y) with the property that H(m,n) returns True if program m

with input data n halts and returns False otherwise, it follows that there is
no such program.

2This outline is based on [2, Theorem2.1, page 54.]



Remark 1 Note that what this proof really shows is that no matter what
rules we write down for the purpose of defining the program H(x,y) with the
property that H(m,n) returns True if program m with input data n halts and
returns False otherwise, when the program is run on our idealized computer,
it simply will not satisfy this specification. Thus, this is not so much a
limitation on what programming rules can be written down, but what our
idealized computer can accomplish with whatever rules it happens to be
given. The key limitation on our idealized computer is that in a finite length
of time it can carry out only a finite number of commands. This is a physical
limitation which we humans share with all devices that we can build. It is
also a limitation on any being subject to the physical laws of our universe,
so any speculation about a being not subject to this limitation belongs to
theology rather than science. This result and those related to it would not
appear to limit the powers of a being not subject to this physical limitation,
and so these results should not offend anybody because of their religion: the
limitations apply to us humans and the devices we can build, not to God.

2 A Formal System for Elementary Arith-

metic

This is a specification of classical elementary arithmetic. It is an example of
the kind of system to which Gödel’s Incompleteness Theorem applies.

Definition 1 We assume that we are given infinitely many variables: x0, x1, x2, . . ..
We will denote these variables by x, y, z, etc. Terms are then defined as fol-
lows:

1. Every variable is a term.

2. The constant 0 is a term.

3. If s is a term, so is s′.

4. If s and t are terms, so are s + t and st.

We will use ‘m∗’ as an abbreviation for 0

m︷ ︸︸ ︷
′ . . . ′, the term representing

the number m. Thus, t′ represents the number that is one greater than the
number represented by t.



Definition 2 Formulas are defined as follows:

1. If s and t are terms, then s = t is a formula.

2. If A is a formula, then so is ¬A.

3. If A and B are formulas, then so is A ⊃ B.

4. If A is a formula and x is a variable, then (∀x)A is a formula.

We will use ‘A ∧ B’ as an abbreviation for ¬(A ⊃ ¬B), ‘A ∨ B’ for
¬A ⊃ B, and ‘(∃x)A’ for ¬(∀x)¬A.

Definition 3 An occurrence of a variable x in a formula A is bound if it
occurs in a subformula of the form (∀x)B; otherwise the occurrence is free.

Thus, for example, in (∀x)(x = y), x is bound and y is free.

Substitution of a term t for a variable x in a formula A(x) is defined so
that if a variable occurring free in t would be bound after the substitution,
then the bound variable is changed first to prevent this. Thus, for example,
if t is x′, then substituting t for y in (∀x)(x = y) results in (∀z)(z = x′) and
not in (∀x)(x = x′).

Logic Axiom Schemes If A, B, and C are any formulas, if x is any variable,
if t is any term, if A(x) is any formula, and if A(t) is the result of substituting
t for x in A(x), then the following are axioms:

1. A ⊃ (B ⊃ A).

2. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)).

3. (¬A ⊃ ¬B) ⊃ (B ⊃ A).

4. (∀x)A(x) ⊃ A(t).

5. C ⊃ (∀x)C if x does not occur free in C.

6. (∀x)(A ⊃ B) ⊃ ((∀x)A ⊃ (∀x)B).

7. (∀x)(x = x).

8. (∀x)(∀y)(x = y ⊃ (A(x) ⊃ A(y)).



Non-logical axioms

1. (∀x)(∀y)(x′ = y′ ⊃ x = y).

2. (∀x)¬(x′ = 0).

3. (∀x)(x + 0 = x).

4. (∀x)(∀y)(x + y′ = (x + y)′).

5. (∀x)(x0 = 0).

6. (∀x)(∀y)(xy′ = xy + x).

7. If A(x) is any formula and x any variable, then A(0) ∧ (∀x)(A(x) ⊃
A(x′)) ⊃ (∀x)A(x) is a non-logical axiom.

Rules of inference

1. From A ⊃ B and A to deduce B.

2. From A(x), where x is a variable which does not occur free in any
assumption on which A(x) depends, to deduce (∀x)A(x).

Definition 4 A deduction from a set Γ of assumptions is a sequence of for-
mulas such that each formula is an axiom or is a formula in Γ or else is
derived from one or more previous formulas in the sequence by one of the
rules of inference.

We write ‘Γ 
 A’ to mean that there is a deduction from the set Γ of
assumptions whose conclusion is A.

We write ‘ 
 A’ to mean that Γ 
 A and Γ is the empty set.

The following theorem can be proved about this system:

Theorem 2 For every partial recursive function f(x1, . . . , xn) there is a
formula A(x1, . . . , xn, y) such that f(m1, . . . , mn) = k if and only if

 A(m∗

1, . . . , m
∗
n, k

∗).



3 Gödel’s Incompleteness Theorem and Its

Proof

Gödel’s Incompleteness Theorem says that in any formal system which in-
cudes arithmetic that is strong enough to be “interesting,” there is a formula
which, while true, cannot be proved. More precisely, it says this of any for-
mal system in which all partial recursive functions can be represented in the
sense of Theorem 1 of §2.

To get a hint of the proof,3 imagine that we have the kind of idealized
computer described in §1. Anybody with experience using a computer knows
that the numerical coding allows the computer to be programmed to deter-
mine whether it is reading a single character, a string of characters (a word),
a sequence of words, etc. Furthermore, anybody familiar with a programming
language or a spreadsheet knows that the computer can be programmed to
go back and forth between the character and its number.

Using the definitions in §2, our idealized computer can be programmed
to behave rather like a word-processor: it can be programmed to determine
whether or not a given number is the code of a variable, the constant, a term,
or a formula. It can be programmed to go back and forth between a number
m and the term m∗ that represents it. It can be programmed to determine
whether or not a number codes a variable which occurs free or bound in the
formula coded by another number. It can be programmed to determine the
number of the formula resulting from the formula corresponding to a given
code by the substitution of the term corresponding to a second code for a
variable corresponding to a third code. This allows it to be programmed
to determine whether a given number codes a logical or non-logical axiom.
And it can be programmed to determine whether one number which codes
a formula in a sequence of formulas coded by a second number follows from
formulas that occur earlier in the sequence by one of the rules. Thus, the
computer can be programmed to determine whether a number codes a valid
deduction.

By these results and Theorem 1 of §2, there is a formula G(x, y) with two
free variables with the property that


 G(m∗, n∗) ⇐⇒ m is the number of a formula A(x) with one free variable
and n is the number of a proof of A(m∗) (which results
from A(x) by substituting m∗ for x)

3A complete proof, which would be too technical for this paper, can be found in [12].



Now let A(x) be the formula (∀y)¬G(x, y) (which has one free variable, x).
Let g be the number which codes this formula. Then


 G(g∗, n∗) ⇐⇒ g is the number of a formula (∀y)¬G(x, y) with one free
variable and n is the number of a proof of (∀y)¬G(g∗, y)

But 
 (∀y)¬G(g∗, y) implies 
 ¬G(g∗, n∗) for any n. Hence, if the system
is consistent,4 then

 
 (∀y)¬G(g∗, y).

But


 (∀y)¬G(g∗, y) ⇐⇒ every number is not the number of a proof of
(∀y)¬G(g∗, y)

or, equivalently,


 (∀y)¬G(g∗, y) ⇐⇒ (∀y)¬G(g∗, y) is unprovable

It follows that (∀y)¬G(g∗, y) is true, and so it is both true and unprovable.
�

One way of looking at Gödel’s Incompleteness Theorem is that it says
that for any theory strong enough to be “interesting,” it is impossible to
give any sound and complete axiomatization. Here, an axiomatization does
not necessarily have to be finite; it is sufficient that it give an effectively
computable test for correctness of any supposed proof. Hence, what Gödel’s
Incompleteness Theorem really says is that there is no sound and complete
specification of the truth conditions of the theory. This applies, in particular,
to the theory of elementary arithmetic and to any theory containing it.

On the other hand, just because there is no sound and complete specifica-
tion of the truth conditions of elementary arithmetic does not mean that we
should reject elementary arithmetic or claim that it is impossible to distin-
guish truth from falsehood in it. Indeed, in order to make sense of the proof
of Gödel’s Incompleteness Theorem, we need to take elementary arithmetic
as a meaningful theory of which we can make sense.

Remark 2 The conclusions of Remark 1 apply to Gödel’s Incompleteness
Theorem as well as to the undecidability of the halting problem. Indeed,
they apply to all the discussions of this paper.

4In most systems of formal logic, including the example of §2, a contradiction implies
any formula. Hence, in most inconsistent systems any formula can be proved. It is standard
practice in science to replace immediately any theory found to be inconsistent, so it makes
sense to assume that we are dealing with consistent theories.



4 Implications for Informal Theories

Gödel’s Incompleteness Theorem and related results apply directly only to
theories that are strictly formalized. In other words, they apply only to theo-
ries in which there is a strictly mechanical procedure that could be calculated
by our idealized computer that can determine whether a proposed deduction
is valid. Most deductive theories are not presented in this form, and so these
results do not apply directly to them. However, I think there are implications
of these results for such theories.

If an argument is presented in a theory that is not completely formalized
but could be completely formalized, then the results obviously apply. This
would appear to be the case for most theories in mathematics and sciences
such as physics that are heavily mathematical, for in these fields it appears
that a process of making explicit assumptions that have previously been
implicit will, if carried out long enough, lead to a structly formal theory with
the same provable results.

However, for fields outside of the mathematical sciences, it is not always
clear that theories can be completely formalized in this sense. For such theo-
ries, we have no basis for concluding that a result like Gödel’s Incompleteness
Theorem applies directly. Nevertheless, we cannot ignore the possibility that
such a result might apply, for unless there is a disproof, the lack of a proof
does not automatically imply that a result is false.

Thus, even if a theory is not compeletely formalized and it is not clear
that it can ever be completely formalized, the possibility that incompleteness
and related results apply to it cannot be simply ignored. We cannot assume
the completeness of any theory without some evidence for it.

Note that the conclusions of Remarks 1 and 2 apply here, so that charac-
terization means characterization by human means (or institutions). It does
not really make sense to talk about characterizations without considering the
agent doing the characterizing.

5 Applications to Philosophy

I propose here to consider two potential applications of these ideas to phi-
losophy: the philosophy of science and ethics.



5.1 The Philosophy of Science

Here incompleteness would imply that there is no set of rules which can
completely characterize the scientific method. I have already suggested [10]
that this kind of incompleteness may explain why Karl Popper should not
have reacted as negatively as he did [9] to the suggestion by Thomas Kuhn [7]
that different scientific paradigms are incompatible. I also suggested there
that it may explain why Feyerabend [3] is right to say that the scientific
method cannot be completely characterized by a set of rules, but he is wrong
to conclude from this fact that there is no such thing as a scientific aproach
which is different from other approaches.

5.2 Ethics

Many arguments about ethics take the form of deductive arguments from
rules (such as the ten commandments) or arguments about which rules define
right and wrong. But suppose that no set of rules can completely character-
ize the notion of right and wrong. This may imply that we need to think
differently about the nature of right and wrong than we have in the past.

As an example, consider the Golden Rule: “Do unto others as you would
have others do unto you.” This is the well-known Christian form of this
rule,5 but many other religions seem to have a similar idea. In Judaism, for
example, there is the well-known saying attributed to Hillel,6 “Do not do to
others what you would not have others do to you. That is the essence of
the Law. All the rest is commentary.”7 The same idea occurs in many other
influential religions.8

5It can also be found in Matthew 7:1.
6A noted Jewish rabbi who died in the year 10 of the common era. When he said this

he was commenting on the Mosaic Law, which is considered by Jews to be the foundation
of Judaism.

7This can be found in Talmud, Shabbat 3id,
8For example, consider the following quotations, which are based on information from

http://www.teaching-values.com/goldenrule.html: 1) Islam, “No one of you is a be-
liever until he desires for his brother that which he desires for himself.” (Source: Sunnah);
2) Bhuddism, “Hurt not others in ways that you yourself would find hurtful.” (Source:
Udana-Varga 5,1); 3) Hinduism, “This is the sum of duty; do naught onto others that
you would not have them do unto you.” (Source: Mahabharata 5,1517); 4) Confucianism,
“Do not do to others what you would not like yourself. Then there will be no resentment
against you, either in the family or in the state.” (Source: Analects 12:2); 5) Zoroastrian-
ism, “That nature alone is good which refrains from doing another whatsoever is not good



If the above quotations are taken literally as rules, then there may seem to
be differences between them. But there does seem to be a sense in which they
all express the idea that it is important to imagine oneself in the situation of
others in making ethical decisions. Furthermore, applying the Christian form
of this rule in a legalistic way can lead to strange conclusions. For example,
I happen to be very fond of the music of Mozart. Suppose I conclude from
this that I would be happy to have Mozart’s music played over loudspeakers
that I can hear all the time.9 If I apply the Golden Rule in a legalistic way,
I could conclude that, as a way of treating others the way I would want to
be treated, I should support having Mozart’s music played over loudspeakers
everywhere all the time. But this is clearly not an appropriate conclusion:
some people do not like Mozart’s music.10

Does this not imply that treating the Golden Rule legalistically in this
way is a mistake? Should we not instead treat it as an indication of the
idea that we should always be trying to put ourselves in others’ shoes when
making ethical decisions? And should we not also conclude that there is no
set of rules that we can use to completely and correctly characterize how we
should do this?

It seems clear to me that we cannot do completely without rules for
making ethical or moral decisions: life simply does not give us enough time
to go back to first principles every time we have to make a decision with
ethical or moral consequences. But it may be important to realize that these
rules are only guidelines, and in difficult cases they may not be enough to
decide what is right and what is wrong.

As a practical matter, I strongly suspect that people who are known for
making important ethical or moral decisions under difficult circumstances are
motivated mostly by their identification with others. Take, for example, the
case of gentiles living under Nazi occupation during World War II who hid
Jews from the Gestapo. Did they do this because of a deductive argument
about what is right and wrong, or did they do so for emotional reasons? It

for itself.” (Source: Dadisten-I-dinik, 94,5); 6) Taoism, “Regard your neighbors gain as
your gain, and your neighbors loss as your own loss.” (Source: Tai Shang Kan Yin Pien).

9Obviously, I am ignoring the fact that if I constantly heard Mozart’s music all the
time for long enough I would become thoroughly sick of it, but let us suppose for the sake
of argument that I am ignoring this problem.

10If I correctly understand what American conservative commentator William F. Buck-
ley Jr. has said about Bach, there are Bach fans to whom the music of Mozart sounds too
modern.



is worth noting that when Jan Karski, a member of the Polish underground
who was being prepared by the underground for a trip to the West in late
1942 to explain the situation in Poland, was shown the Warsaw Ghetto, he
had a very emotional reaction, which he describes movingly in [5, Chapter
29]. This reaction was surely not the result of a deductive argument. I
suspect that its basis was his identification with the Jews involved as human
beings essentially like him. In other words, I suspect that he reacted this
way because he could easily imagine being in the place of those Jews.

Another potential example: many first nations in Canada have a tradi-
tion of dealing with wrongdoing by means of “healing circles,” in which the
accused and his/her victims are brought together to discuss the situation and
decide on what action to take. Do these healing circles achieve their good
effects by inducing the wrongdoer to identify with the victims of his/her
actions?

6 Applications to Law

In a letter written in 1981 [8] and widely quoted in 1990 while his confirmation
to the U. S. Supreme Court was being considered, Justice David H. Souter,
writing for a group of judges, objected to a provision in a proposed state
law requiring a judge to determine if an abortion should be performed on a
minor when parental consent could not be obtained:

. . . The court’s concern is directed . . . to that provision of the
bill that would require a justice of the Superior Court to authorize
the preformance of an abortion upon . . . a minor when there is no
parental consent, if the justice determines “that the performance
of an abortion would be in . . . [the] best intersts” of a minor who
is “not mature.”

The members of the court find two fundamental problems
inherent in this provision. First, it would express a decision by
society, speaking through the Legislature, to leave it to individual
justices of this court to make fundamental moral decisions about
the interests of other people without any standards to guide the
individual judges. Judges are professionally qualified to apply
rules and stated norms, but the provision in question would en-
act no rule to be applied and would express no norm. In the
place of a rule or a norm there would be left only the individual



judge’s principles and predilections. As carefully considered as
these might be, they would still be those of only one individual,
not those of society. Much criticism of the role of the judiciary
in this country has characterized judicial activity in the applica-
tion of constitutional standards as no more than the imposition
of individual judges’ views in the guise of applying constitutional
terms of great generality. The provision that I have quoted from
the present bill would force the Superior Court to engage in just
such acts of unfettered personal choice.

The court’s second concern is with the necessarily moral char-
acter of such choice and the resulting disparity of responses to
requests that judicial discretion be exercised. As you would ex-
pect, there are some judges who believe abortion under the cir-
cumstances contemplated by the bill is morally wrong, who could
not in conscience issue an order requiring an abortion to be per-
formed. There are others who believe that what may be thought
to be in the “best interests” of the pregnant minor is itself just
as necessarily a moral as a social question, upon which a judge
may not morally speak for another human being, whatever may
be that judge’s own personal opinion about the morality of abor-
tion. Judges in each such category would be obligated to indicate
that they could not exercise their power in favor of authorizing
abortions to be performed on immature pregnant minors. The in-
evitable result would be required shopping for judges who would
entertain such cases. In other words, a principled and consistent
application of the quoted provision would be impossible.

This argument against requiring judges to make decisions in the absence
of rules or norms to guide them could just as well be made against rules
or norms that did not provide adequate guidance to judges; i.e., rules or
norms that are not complete in an important legal sense. In fact, given the
remarks of Judge Souter about the problem of consistency in the application
of the law, it is reasonable to suggest that serious incompleteness in the rules
and norms provided to judges by a law may cause the most conscientious
judge, feeling forced to make a decision despite the incompleteness, to be
unable able to avoid inconsistency of application of the law. It seems to
me that this might make the law unconstitutional on the grounds that the
resulting inconsistency in its application would constitute a violation of the



equal protection clause of the Fourteenth Amendment of the United States
Constitution and of the Charter of Rights of the Canadian Constitution.

Even if, as R. P. Kerans argued in [6], judges do not simply apply rules
to the facts of cases, judges still need some information in the form of rules
or norms to guide them so that there is consistency in the application of the
law. For this information, it is still reasonable to consider the question of
completeness.

For a particular law, it would presumably be easy to determine whether
or not its rules and norms are sufficiently complete to pass a constitutional
test by examining the record of decisions made under that law or similar laws,
particularly for borderline cases. In fact, is this not already a part of our legal
system in the sense that courts have in the past ruled laws unconstitutional
on grounds of vagueness? On the other hand, it is not at all clear how it might
be possible to prove that for a given subject, any set of proposed rules and
norms is necessarily incomplete or incorrect.11 Yet, the above considerations
suggest that this possibility cannot be ruled out without some evidence that
there is some set of rules and norms which is both complete and correct.

Suppose a legislature passes a law on a certain subject when many at-
tempts to pass a law on that subject have been ruled unconstitutional in the
past. Suppose individuals are charged under this new law. Even if this law is
eventually ruled unconstitutional, the indivuals charged will have been put
through a long, arduous, and expensive legal process before the final ruling
on the constitutionality of the law is obtained. In such a situation, might
there not be a reasonable presumption that the long history of rulings that
laws on the subject are unconstitutional are an indication that it is not pos-
sible to pass a legally complete law on this subject, and might that not raise
a presumption that nobody should be charged under a new attempt at such
a law until its constitutionality is tested in some way? This would seem to
suggest some kind of constitutionally based right not to be prosecuted under
certain kinds of statutes until their constitutionality is tested. How would it
be possible to incorporate such a right in the legal system?

11Here, “correct” means adequately characterizing the subject at hand, so that the result
of applying the rules and norms will lead to results consistent with the intentions of those
proposing them. But in a legal system like that of the United States or Canada, it should
also include being consistent with the constitution.



7 Conclusion

In this paper I have begun an inquiry as to whether or not Gödel’s Incom-
pleteness Theorem and results related to it apply to areas that are not strictly
formalized, in particular to areas of philosophy and the law. My purpose was
to ask questions, not give answers. If this work inspires more inquiry into
this subject, I will have achieved my purpose.
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