
Excluded Middle without Definite Descriptions in

the Theory of Constructions

Jonathan P. Seldin∗

Department of Mathematics
Concordia University

Montréal, Québec, Canada
seldin@alcor.concordia.ca

November 15, 1998

1 Introduction

In his posting to the TYPES network [3], Pottinger shows that if excluded
middle and definite descriptions are added to Coquand’s calculus of con-
structions, then any two terms in a small type (i.e., a type in Prop) are
equal (in the sense of Leibniz equality). This conclusion is called “proof
degeneracy”. Although in general proof degeneracy does not imply incon-
sistency, it is still undesirable because it means that all terms in small types
are identified by the logic, and hence there is no representation of a data
type with more than one element.

Coquand [1] showed by a model theoretic proof that excluded middle in
the calculus of constructions is consistent. Here I show a stronger result,
that excluded middle without definite descriptions does not imply proof de-
generacy. My method is proof theoretic, a variant of the ¬¬-interpretation,
and part of it provides an alternative proof of Coquand’s consistency result.
My main result will follow from a proof that an environment which implies

∗The research which produced the information contained in this document was spon-
sored in part by the U.S. Air Force Systems Command, Rome Air Development Cen-
ter, Griffiss AFB, New York 13441-5700 under Contract No. F30602-85-C-0098, in part
by grant EQ41840 from the program Fonds pour la Formation de Chercheurs et l’aide
a la Recherche (F.C.A.R.) of the Quebec Ministry of Education, and in part by grant
OGP0023391 from the Natural Sciences and Engineering Research Council of Canada.

1



classical arithmetic is consistent. Since one of the Peano axioms asserts that
zero is not a successor, proof degeneracy would imply the inconsistency of
this environment.

Coquand [1] also proved that excluded middle and strong sums imply
proof degeneracy. Garrel Pottinger has pointed out to me (private commu-
nication) that the strong sums, when interpreted under the Curry-Howard
isomorphism, have the disjunction property. Since this property is known to
be characteristic of constructive logic and incompatible with classical logic,
this result of Coquand is really a confirmation of what we should expect of
classical logic. The result of Pottinger [3], on the other hand, is unwelcome,
since both excluded middle and definite descriptions are desirable in some
circumstances. The result proved here shows that we are more likely to have
to give up definite descriptions than excluded middle.

An ASCII version of this document was circulated on the TYPES mailing
list in September 1990. A LaTEX version was prepared as the result of
a request from some readers of TYPES in November 1990. I intend to
incorporate this material in [6].

I would like to thank Garrel Pottinger for his helpful comments and
suggestions.

2 TOC

I will follow Pottinger [3] in referring to the theory of constructions as TOC.
The version of the theory of constructions used here will be the one of Seldin
[5], which is more general (in its equality rules) than the versions used by
Coquand and Pottinger. More specifically, I will use the formulation of TOC
which is called TAC in Seldin [5, Chapter 4].

I will adopt most of the conventions of Pottinger [3]. However, I will
not use parameters, so lower case Greek letters will be available for other
uses. In particular, κ and κ′ will each be either Prop or Type. Furthermore,
‘[N/x]M ’ will denote the result of substituting N for x in M .1 The version
of TOC used here is a natural deduction system in the sense of Gentzen and
Prawitz. It has one axiom, namely

(P T) Prop : Type

The rules are as follows:
1This was Curry’s notation, and I am used to it.

2



(κκ′Formation) If x does not occur free in A or in any undischarged as-
sumption,

A : κ

[x : A]
B : κ′

(∀x : A)B : κ′,

(Eq′κ)
A : κ A =∗ B

B : κ,

(∀ e)
M : (∀x : A)B N : A

MN : [N/x]B,

(∀ κi) If x does not occur free in A or in any undischarged assumption

[x : A]
M : B A : κ

λx : A . M : (∀x : A)B,

(Eq′′)
M : A A =∗ B

M : B.

Seldin [5, Theorem 4.14] proves the strong normalization theorem for
deductions in this formulation. Since this result refers to a Prawitz-style
reduction (see Prawitz [4]), it has as a consequence that in any normalized
deduction whose conclusion is the conclusion of an inference by (∀e), the
main branch (which I am writing as the left branch in tree diagrams) consists
of inferences by (∀e) and (Eq′′) and no other rules.

3 Additional assumptions in TOC

The strong normalization theorem for deductions in TOC implies the consis-
tency of the basic system. However, environments Γ may still be inconsistent
in the sense that

Γ � M : void

for some term M . To prove an environment Γ consistent, we need to show
that this cannot happen. Note that since void is (∀x : Prop)x, from

Γ � M : void,

3



it follows for a variable x not free in Γ that

Γ, x : Prop � Mx : x.

Furthermore, the last inference in this latter deduction cannot be by (∀κi).
Hence, the last inference must be by (∀e).2 Furthermore, the formula at
the top of the main (left) branch cannot be discharged; for the only rule
which would allow the discharge of an assumption over the left premise is
(κκ′Formation), and this rule cannot occur in the left branch if the type of
the conclusion is a variable. Hence, to show that there is no deduction of

Γ, x : Prop � Mx : x,

it is often sufficient to show that no formula of Γ can occur at the top of the
left branch.

One class of environments which satisfies this requirement, and is hence
consistent, is given by the following definition:

Definition 1 (Strongly consistent environment) Let Γ be a valid en-
vironment (in the sense of [5]) of the form

x1 : A1, x2 : A2, . . . , xn : An.

For each i = 1, 2, . . . , n, let Ai be

(∀yi1 : Bi1)(∀yi2 : Bi2) . . . (∀yimi : Bimi)Si,

where Si does not convert to the form (∀x : A)B. This Si is called the tail of
the type Ai. (It follows that each Si converts to the form ziMi1Mi2 . . . Mip,
where zi is either an atomic constant or a variable.) Then Γ is strongly
consistent if for each zi which is a variable (and is hence one of the xj or
yjk), if the number of universal prefixes of Ai is greater than 0, then the
tail of the type of zi (which is the tail of Aj or Bjk) does not convert to
Prop. (Since we are dealing with terms with normal forms, convertibility is
decidable here.)

It is not difficult to see that it follows from this definition that no formula
of a strongly consistent environment Γ can occur at the top of the left branch
of a deduction of the form

Γ,Γ′ � M : x.

this proves the following immediate consequence of Definition 1:
2Or by (Eq′′), but in this case the same conclusion follows.

4



Theorem 1 A strongly consistent environment is consistent.

Note how weak this result is: no type in a strongly consistent environ-
ment can be the universal closure of any type of the form void, A∧B, A∨B,
(∃x : A)B, or QAMN (see [5, Chapter 5] for the definitions of these types).

If the proofs of [5, Theorem 5.2 and Corollary 5.2.1] are properly rewrit-
ten, they show the consistency of an environment of the form Γ,Γ′, where
Γ is as in the theorem and Γ′ is strongly consistent. The same sort of mod-
ification can be made in [5, Theorem 5.3 and Corollary 5.3.1].

Since ¬A is A → void, no formula of the form ¬A can occur as the type
of an assumption in a strongly consistent environment. However, certain
environments with negations of formulas as types can be proved consistent:

Definition 2 (Strongly negation consistent environment) Let Γ0 be
a strongly consistent environment. Let Γ1 consist of assumptions of the form
u : ¬B, where, under the assumptions of Γ0, B is a small simple type but
B does not convert to the type of an assumption in Γ0. Let Γ2 consist of
assumptions of the form v : ¬¬B, where, under the assumptions of Γ0, B
is a small simple type and where ¬B does not convert to the type of an
assumption in Γ1 (but B may convert to the type of an assumption in Γ0).
If Γ is Γ0,Γ1,Γ2, then Γ is said to be strongly negation consistent.

Theorem 2 A strongly negation consistent environment is consistent.

Remark Clearly, if B converts to C, then u : ¬B, v : C � uv : void. What
this theorem says is that if B is a small simple type, this is essentially the
only way to get a contradiction.

Proof Suppose Γ is strongly negation consistent and suppose that for some
term M

Γ � M : void.

then for a variable w which is not free in Γ, we have for some term M ′

Γ, w : Prop � M ′ : w.

Normalize this deduction and let the result be D. Suppose that there is no
proper subdeduction of D which proves either

Γ′ � M ′′ : void or Γ′, w : Prop � M ′′ : w

5



for any other strongly negation consistent Γ′; otherwise we can begin with
this proper subdeduction. (Here proper subdeduction means that there
is more difference than the one inference necessary to go back and forth
between a conclusion whose type is void and one whose type is w.) Now
the last inference in D which differs from (Eq′′) cannot be (∀κi); thus it
must be (∀e). It follows that the left branch of D consists of inferences by
(∀e) and (Eq′′), and hence the top of the left branch is not discharged. This
assumption at the top of the left branch must be in Γ1 or Γ2.

Case 1. It is in Γ1. Then it is u : ¬B for a small simple type B not
convertible to a type in Γ0 or Γ2, and D is

u : ¬B

w : Prop, u : ¬B
︸ ︷︷ ︸

D1

M ′′ : B
(∀e)

uM ′′ : void

D2

M ′ : w.

Now clearly no assumption of D1 is discharged in D2. Hence, since B is a
simple type, the top of the left branch of D1 must be in Γ1 or Γ2. Hence,
D1 is

u′ : ¬B′

w : Prop, u : ¬B, u′ : ¬B′
︸ ︷︷ ︸

D3

M ′′′ : B′
(∀e)

u′M ′′′ : void

D4

M ′′ : B,

where B′ is simple or the negation of a simple type. But then

u′ : ¬B′

w : Prop, u : ¬B, u′ : ¬B′
︸ ︷︷ ︸

D3

M ′′′ : B′
(∀e)

u′M ′′′ : void

6



is a proper subdeduction of D contradicting the assumption about D.
Hence, the top of the left branch of D is not in Γ1.

Case 2. It is in Γ2. Then it is u : ¬¬B, where B is a small simple type,
and D is

u : ¬¬B

w : Prop, u : ¬¬B
︸ ︷︷ ︸

D1

M ′′ : ¬B (∀e)
uM ′′ : void

D2

M ′ : w.

the argument of Case 1 shows that the last inference in D1 which differs
from (Eq′′) is not (∀e), so it must be by (∀Pi), and D1 is

w : Prop, u : ¬¬B,
1

[v : B]
︸ ︷︷ ︸

D3

M ′′′ : void

D4

B : Prop (∀Pi − 1)
λv : B . M ′′′ : ¬B,

where M ′′ converts to λv : B . M ′′′. But then D3 is a proper subdeduction
of D contradicting our assumption. Hence, the assumption at the top of the
left branch of D is not in Γ2.

This shows that Γ is consistent.

4 Classical logic

Any environment with the assumption

cl : (∀u : Prop)(¬¬u → u)

will imply classical logic. On the other hand, this assumption cannot occur
in a strongly consistent environment.

To simplify the notation, let CL be an abbreviation for

(∀u : Prop)(¬¬u → u).

7



We want each occurrence of cl : CL as an assumption to occur in a
subdeduction of the form

cl : CL

D1

A : Prop (∀e)
clA : ¬¬A → A

D2

M : ¬¬A (∀e)
clAM : A.

This is not a difficult restriction to satisfy, since we can replace

cl : CL

D1

A : Prop (∀e)
clA : ¬¬A → A,

where the conclusion is not a major premise for (∀e), by

cl : CL

D1

A : Prop (∀e)
clA : ¬¬A → A

1
[x : ¬¬A] (∀e)

clAx : A

D2

¬¬A : Prop (∀Pi − 1)
λx : ¬¬A . clAx : ¬¬A → A,

where D2 is
D1

A : Prop

Dv
void : Prop (PPFormation − v)¬A : Prop

Dv
void : Prop (PPFormation − v)¬¬A : Prop,

and where Dv is

Prop : Type
n

[x : Prop] (TPFormation − n)
void : Prop;

also, if cl : CL is not the major premise for an inference by (∀e), then we can
replace it by

cl : CL
2

[x : Prop] (∀e)
clx : ¬¬x → x

1
[y : ¬¬x] (∀e)

clxy : x

2
[x : Prop]

D1

¬¬x : Prop (∀Pi − 1)
λy : ¬¬x . clxy : ¬¬x → x Prop : Type (∀Ti − 2)

λx : Prop . λy : ¬¬x . clxy : CL,

8



where D1 is

x : Prop

Dv
void : Prop (PPFormation − v)¬x : Prop

Dv
void : Prop (PPFormation − v)¬¬x : Prop.

A deduction in which both of these replacements have been made system-
matically in all possible places will be called prepared.3

Now consider in a prepared deduction a subdeduction of the form

cl : CL

D1

A : Prop (∀e)
clA : ¬¬A → A

D2

M : ¬¬A (∀e)
clAM : A.

Since there is a subdeduction of A : Prop, A is a type; hence, it is either
simple or compound.

The strategy is to follow the idea of [4] for classical logic, and eliminate
occurrences of subdeductions like those above in which A is compound.
Thus, assume that A is (∀y : B)C. We need a lemma:

Lemma 1 Let Γ be a valid environment, and suppose that

Γ � A : X,

where A =∗ (∀y : B)C and X =∗ κ. Then

Γ � B : κ′ and Γ, y : B � C : κ.

Proof A straightforward induction on the normalized deduction of Γ � A :
X.

Now by this lemma and D1 above, it follows that there are deductions

D3

B : κ,

y : B

D4(y)
C : Prop.

3Note that in preparing a deduction, we replace terms in which cl occurs by terms to
which they are η-convertible.

9



Then we can transform

cl : CL

D1

A : Prop (∀e)
clA : ¬¬A → A

D2

M : ¬¬A (∀e)
clAM : A

into the following:

cl : CL

1
[y : B]

D4

C : Prop (∀e)
clC : ¬¬C → C

D3

B : κ,
D5

λy : B . C : (∀y : B)Prop,
D2

M : ¬¬A,
1

[y : B]
︸ ︷︷ ︸

D6(B, λy : B . C, M, y)
T (B, λy : B . C, M, y) : ¬¬C (∀e)

clCT (B, λx : B . C, M, N) : C

D3

B : κ (∀κi − 1)
λy : B . clCT (B, λx : B . C, M, N) : (∀x : B)C,

where D5 is
2

[y : B]
D4(y)

C : Prop

D3

B : κ (∀κi − 2)
λy : B . C : (∀y : B)Prop,

T (u′, v′, u, v) is

λw : ¬v′v . u(λy : (∀x : u′)(v′x) . w(yv)),

and D6(u′, v′, u, v) is the obvious normalized deduction of

u′ : κ, v′ : (∀x : u′)Prop, u : ¬¬(∀x : u′)(v′x), v : u′ � T (u′, v′, u, v) : ¬¬v′v.

In the special case in which A =∗ void, we have a special transformation:
we replace

cl : CL

Dv
void : Prop (∀e)

cl void : ¬¬void → void

D1

M : ¬¬void (∀e)
cl voidM : void

by

D1

M : ¬¬void

1
[x : void]

Dv
void : Prop (∀Pi − 1)

λx : void . x : ¬void (∀e)
M(λx : void . x) : void.

10



If we repeatedly apply these transformations to a deduction, we will
eventually reach a point at which in all occurrences of a part of a deduction
of the form

cl : CL

D1

A : Prop (∀e)
clA : ¬¬A → A

D2

M : ¬¬A (∀e)
clAM : A,

A is a simple type. Of course, this will have replaced terms of the form
clAM for compound types A of the form (∀y : B)C by

λy : B . clCT (B, λx : B . C, M, N)

and cl voidM by M(λu : void . u). If we repeat these replacements, we
will eventually eliminate all occurrences of the assumption cl : CL as the
major premise for an inference by (∀e) in which the term of the minor
premise is a compound type. We can go on to eliminate all occurrences of
this assumption by changing some small simple types B to ¬¬B; this will
convert a deduction of Γ, cl : CL � M : A to a deduction of Γ′ � M∗ :
A′, where Γ′ and A′ are obtained from Γ and A by replacing some small
simple types B by ¬¬B and changing some of the terms. Note that all the
terms so changed have occurrences of cl in them; it follows from the subject-
construction property4 that if a term without an occurrence of cl occurs in a
type in Γ or in A, then that term is unchanged, and so is any type to which
it is proved to belong in the deduction. These terms occurring in the types
of Γ or A (whether changed or not) will be called type arguments.

Since it is trivial to prove in constructive logic that ¬¬A � A, we can
put all this in the form of the following theorem:

Theorem 3 If there is a deduction of Γ, cl : CL � M : A, and if Γ′ and A′

are obtained from Γ and A by 1) replacing every simple small type B by ¬¬B
provided that B occurs in Γ or A but does not occur inside an occurrence of
the type void or in the type of a type argument in which cl does not occur,
and 2) by changing type arguments in which cl does occur, then for some
term M∗ there is a deduction of Γ′ � M∗ : A′.

Now suppose that we have a deduction cl : CL � M : void (where Γ is
empty). Then by the theorem, there is a deduction D of � M : void. Since

4See [2, Notes 14.18 and 15.12 and Remark 16.37] and [5, p. 301]. It says that a
deduction follows the construction of the term.

11



there is no such deduction (by the normalization theorem), this gives us a
proof of Coquand’s consistency result:

Corollary 3.1 Classical logic is consistent in the calculus of constructions.

5 Classical arithmetic

In [5, Chapter 5] it is shown that intuitionistic arithmetic can be obtained
by adding the two assumptions

peano1 : (∀n : N)(¬σn =N 0),

peano2 : (∀n : N)(∀m : N)(σn =N σm → n =N m),

where “P =A Q” is an abbreviation for “QAPQ”. There is no need for
induction because of the predicate N , which is defined to be

λn : N . (∀A : N → Prop)((∀m : N)(Am → A(σm)) → A0 → An).

Then the induction axiom follows for terms of which N is true; in fact, this
definition is essentially the way Dedekind proved induction. This is why
peano1 and peano2 are sufficient for arithmetic.

In fact, peano1 is sufficient. We can derive a version of peano2 relative
to N using the predecessor defined in [5, Definition 5.7] as follows:

Lemma 2 For some term M ,

� M : (∀n : N)(Nn → π(σn) =N n).

Proof A direct calculation gives that π(σ(σn)) =∗ σ(π(σn)). Hence, there
is a term M1 such that

n : N, x : π(σn) =N n � M1 : π(σ(σn)) =N σn.

Hence, by (∀Pi), there is a term M2 such that

� M2 : (∀n : N)(π(σn) =N n → π(σ(σn)) =N σn).

This is the induction step. The basis is easy, since π0 =∗ 0. Then induction
(which follows from the definition of N ) gives us the lemma.

Lemma 3 For some term M ,

� M : (∀n : N)(∀n : N)(Nn →Nm → σn =N σm → n =N m).

12



Proof We can easily formalize in this logic the following argument, where
n = m represents n =N m: σn = σm, therefore π(σn) = π(σm), and so
n = m.

Hence, to prove classical arithmetic consistent, it is enough to prove that
cl : CL, peano1 : (∀n : N)(¬σn =N 0) is consistent.

Theorem 4 Let Γ be a strongly consistent environment in which all simple
types which have universal prefixes are large. Then

Γ, cl : CL, peano1 : (∀n : N)(¬σn =N 0)

is consistent.

Proof Suppose there is a term M such that

Γ, cl : CL, peano1 : (∀n : N)(¬σn =N 0) � M : void.

Then by Theorem 3 there is a term M ′ such that

Γ′, peano1 : (∀n : N)¬(∀z : N → Prop)(¬¬z(σn) →¬¬z0) � M ′ : void.

(Recall that P =A Q converts to (∀z : A → Prop)(zP → zQ).) It is not hard
to see that Γ′ is strongly negation consistent. Now in a normal deduction of

Γ′, peano1 : (∀n : N)¬(∀z : N → Prop)(¬¬z(σn) →¬¬z0) � M ′ : void,

the top of the left branch must be

peano1 : (∀n : N)¬(∀z : N → Prop)(¬¬z(σn) →¬¬z0),

and the minor premise for an inference by (∀e) is

Q : (∀z : N → Prop)(¬¬z(σU) →¬¬z0),

where there is an assumption U : N. This is proved impossible by the
following lemma.

Lemma 6 If Γ is strongly negation consistent, and if for some term M

Γ, peano1 : (∀n : N)¬(∀z : N → Prop)(¬¬z(σn) →¬¬z0)
� M : (∀z : A → Prop)(¬¬zR →¬¬zS),

then R =∗ S.

13



Proof Assume that D is a normalized deduction as in the lemma and that
there is no proper subdeduction of something of this form whose undis-
charged assumptions are in some strongly negation consistent environment
or are of the given form for peano1. If the last inference in D5 is (∀e), then
the top of the left branch must be

peano1 : (∀n : N)¬(∀z : N → Prop)(¬¬z(σn) →¬¬z0),

and then the deduction ending in the minor premise violates the assumptions
about D. In fact, this shows that

peano1 : (∀n : N)¬(∀z : N → Prop)(¬¬z(σn) →¬¬z0)

cannot occur anywhere in D at the top of the left branch, and, since D is
normalized, this implies that it is not used in the deduction. It follows (by
repeating this argument about subdeductions ending in (∀e)) that we can
decompose D until we have a deduction of

Γ, z : A → Prop, u : ¬¬zR, v : ¬zS � Q : void.

By Theorem 2, this is only possible if R =∗ S.

References

[1] Thierry Coquand. Metamathematical investigations of a calculus of con-
structions. In P. Odifreddi, editor, Logic and Computer Science, pages
91–122. Academic Press, 1990.

[2] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators
and λ-calculus. Cambridge University Press, 1986.

[3] Garrel Pottinger. Definite descriptions and excluded middle in the the-
ory of constructions. Circulated electronically to TYPES mailing list,
November 1989.

[4] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm,
Göteborg, and Uppsala, 1965.

5Except for (Eq′′).

14



[5] Jonathan P. Seldin. MATHESIS: The mathematical foundation for
ULYSSES. Interim Report RADC-TR-87-223, Rome Air Development
Center, Air force Systems Command, Griffiss Air Force Base, New York,
November 1987. Actually published in 1988.

[6] Jonathan P. Seldin. On the proof theory of Coquand’s calculus of con-
structions. Annals of Pure and Applied Logic, 83:23–101, 1997.

15


