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All of us who have had to teach the modern ε-δ theory of limits to
calculus students are aware of how difficult the students find it.
Even students who do not study it in calculus, but postpone it until
their first course in analysis find it extremely difficult.

Now the ε-δ theory of limits of functions is very closely related to
the ε-N theory of limits of sequences; in fact, Landau (1960), a book
whose aim is to teach beginning calculus with a completely rigorous
theory, starts with limits of sequences and only then goes on to limits
of functions.  But this theory of limits of sequences seems almost as
difficult for students as the theory of limits of functions.

There is an older theory of what amounts to limits of sequences
that goes back to Euclid and Archimedes.  It is called the method of
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exhaustion, and it has the advantage that because it involves geo-
metric figures it is possible for students to visualize what is going on.
It is the purpose of this paper to show how it is possible to begin with
proofs using the method of exhaustion in Archimedes and Euclid and,
by writing out the steps in modern algebraic notation and doing some
very simple manipulations arrive at modern ε-N proofs.  I am
presenting this as a proposal for introducing the theory of limits to
students for the first time.

Judy Grabiner’s paper elsewhere in this volume presents evidence
that this approach approximates the historical route from Newton
and Leibniz to Cauchy.

Let us begin with the problem of finding a formula for the area of a
circle.  This area is clearly closely related to the problem of finding
the area of a regular polygon, so let us look at two examples of that
problem.  Let us begin with a square:

h

s

Consider each of the four triangles consisting of a side and the lines
which join its ends to the centre.  The area of each of these triangles
is

1
2 hs.

The area of the entire square is the sum of the areas of the four tri-
angles, namely,

1
2 h(4s) = 12 hp,
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where p = 4s is the perimeter.
Now let us consider an octogon:

h

s

This time, we have eight triangles.  As before, the area of each tri-
angle is (1/2)hs, so the area of the octogon is

1
2 h(8s) = 12 hp,

where this time the perimiter is p = 8s.
By now it should be clear that the area of any regular polygon is

1
2 hp,

where h is what is called the “small radius”; i.e., the perpendicular
from the center to a side, and where p is the perimeter.  And since a
circle appears to be essentially a regular polygon with an infinite
number of sides, this suggests that the formula for the area of a cir-
cle is

A = 12 rC.

It is not hard to see that this formula is correct by checking it with
the formula that we are used to.  Since C = 2πr, we have

A = πr2  = 12 r(2πr) = 12 rC.

But as a method of establishing this formula, this is a circular pro-
cedure; indeed, we might call it a “proof by hindsight”.
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The formula also seems obvious from the diagrams.  But diagrams
can be deceiving.  For consider the following example:

s

Now the length of the steped line is clearly 2s, no matter how many
steps there are.  Furthermore, as the number of steps increases, the
stepped line seems to approach the diagonal.  But the length of the
diagonal is 2 s ≠ 2s.  This raises the question, how can we tell when a
limit which seems obvious from a diagram actually holds?

This problem was solved in ancient times, and we can read the
solution in the works of Euclid and Archimedes.  In the case of the
area of a circle, the solution is due to Archimedes, and is found in his
book “Measurement of a Circle” in Heath (1912):

Proposition 1.

The area of any circle is equal to a right-angled triangle in
which one of the sides about the right angle is equal to the radius,
and the other to the circumference, of the circle.

Let ABCD be the given circle, K the triangle described.
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Then, if the circle is not equal to K, it must be either greater or
less.

I.  If possible, let the circle be greater than K.
Inscribe a square ABCD, bisect the arcs AB, BC, CD, DA,

then bisect (if necessary) the halves, and so on, until the sides of
the inscribed polygon whose angular points are the points of
division subtend segments whose sum is less than the excess of
the circle over K.

Thus the area of the polygon is greater than K.
Let AE be any side of it, and ON the perpendicular on AE from

the center O.
Then ON is less than the radius of the circle and therefore less

than one of the sides about the right angle in K.  Also, the
perimeter of the polygon is less than the circumference of the
circle, i.e. less than the other side about the right angle in K.  Also,
the perimeter of the polygon is less than the circumference of the
circle, i.e. less than the other side about the right angle in K.

Therefore the area of the polygon is less than K; which is
inconsistent with the hypothesis.

Thus the area of the circle is not greater than K.
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II.  If possible, let the circle be less than K.
Circumscribe a square, and let two adjacent sides, touching

the circle in E, H, meet in T.  Bisect the arcs between adjacent
points of contact and draw the tangents at the points of bisection.
Let A be the middle point of the arc EH, and FAG the tangent at
A.

Then the angle TAG is a right angle.
Therefore TG >  GA

>  GH.
It follows that the triangle FTG is greater than half the area
TEAH.

Similarly, if the arc AH be bisected and the tangent at the
point of bisection be drawn, it will cut off from the area GAH more
than one-half.

Thus, by continuing the process, we shall ultimately arrive at
a circumscribed polygon such that the spaces intercepted
between it and the circle are  together less than the excess of K
over the area of the circle.

Thus the area of the polygon will be less than K.
Now, since the perpendicular from O on any side of the polygon

is equal to the radius of the circle, while the perimeter of the
polygon is greater than the circumference of the circle, it follows
that the area of the polygon is greater than the triangle  on any
side of the polygon is equal to the radius of the circle, while the
perimeter of the polygon is greater than the circumference of the
circle, it follows that the area of the polygon is greater than the
triangle K; which is impossible.

Therefore the area of the circle is not less than K.

Since then the area of the circle is neither greater nor less
than K, it is equal to it.

Let us now put this proof into modern algebraic notation.  We
want to prove that

A = 12 rC.

Let K = 
1
2 rC (the area of the triangle).  If A ≠ K, then we have A >

K or A < K.
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I.  Suppose A > K.  Inscribe a square, and let its side be s1 , its
short radius be h1 , and its perimeter be p1 .  The area of the square
is

a1  = 12 h1 p1 .

Now double the number of sides of the inscribed polygon, and keep on
doubling it.  For polygon n, the side is sn , the short radius is hn , and
the perimiter is pn ; hence, the area is

an  = 12 hn pn .

Now we have from the geometry of the situation that

h1  < h2  < … < hn  < … < r,

p1  < p2  < … < pn  < … < C,

and,

a1  < a2  < … < an  < … < A.

Now choose N so that

A – aN  < A – 12 rC.

Then

1
2 rC < aN .

But since hN  < r, pN  < C, and aN  = 
1
2  hN pN , we have

aN  < 12 rC,

a contradiction.

II.  Suppose, on the contrary, A < K.  Circumscribe a square, and
let its perimeter be P1 ; then the area is
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A1  = 12 rP1 .

Now double the number of sides of the circumscribed figure, and keep
doing it.  If, for the nth polygon, the perimiter is Pn , then the area is

An  = 12 rPn .

From the geometry, we have

C < … < Pn  < … < P2  < P1 

and

A < … < An  < … < A2  < A1 .

Choose N so that

AN  – A < 12 rC – A.

Then

AN  < 12 rC.

But C < PN  and AN  = 12 rPN , so

1
2 rC < AN ,

another contradiction.

It follows that A = K = 
1
2 rC.

SUMMARY OF ARGUMENT.  We are given that

h1  < h2  < … < hn  < … < r,

p1  < p2  < … < pn  < … < C < … < Pn  < … P2  < P1 ,

and

1
2 h1 p1  < 12 h2 p2  < … < 12 hn pn  < … < A < … < 12 rPn  < … < 12 rP2  < 12 rP1 .
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We want to prove

A = 12 rC.

The inequalities we are given imply that for every n,

1
2 hn pn   < 

1
2 rC < 

1
2 rPn .

Furthermore, if A ≠ 12 rC, then

(1) there is an N such that

A – 12 hN pN  <  A – 12rC  ;

(2) there is an M such that

1
2 rPM  – A <  A – 12rC  .

I.  Suppose A > 12 rC.  Then

 A – 12rC   = A – 12 rC.

Hence, 12 rC < 12 hN pN , a contradiction.

II.  Suppose A < 12 rC.  Then

 A – 12rC   = 12 rC – A.

Hence, 12 rPM  < 12 rC, another contradiction.

It follows that A = 12 rC.

SHORTER SUMMARY OF ARGUMENT.  Give  A – 12rC   a name.  Call

it ε.  Then we have:
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 (1)  For each ε > 0, there is N such that

A – 12 hN pN  < ε.

(2)  For each ε > 0, there is N such that

1
2 rPN  – A < ε.

Now let ε > 0 be given.  Then there are N1  and N2  such that

(1) if n ≥ N1 , A – 12 hn pn  < 
ε
2 ,

(2) if n ≥ N2 , 1
2 rPn  – A < 

ε
2 .

Hence, if N is the maximum of N1  and N2 , then

1
2 rPN  – 12 hN pN  < 

ε
2  + 

ε
2  = ε.

This is true for any ε > 0.  Now by the inequalities,

1
2 hN pN  < A < 12 rPN ,

and

1
2 hN pN  < 12 rC  < 12 rPN .

It follows almost immediately that  A – 12rC   < ε for every ε > 0, and

hence A = 12 rC.

This is now a proof in modern limit theory!  Perhaps students who
have seen this will have an easier time understanding the basic
definition.

Note that the last part of the argument has essentially the follow-
ing form:  given that for every n An  < a < Bn  and An  < b < Bn , and
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that for every ε > 0, there is an N such that for all n ≥ N,  Bn  – An  <
ε, to prove a = b.  To give a complete proof (using all the inequality
rules in the right places) is a form of the original argument of
Archimedes:  suppose a ≠ b.  Then a < b or a > b.  If a < b, then let ε =
b – a, and let n ≥ N; we have  An  < a < b < Bn , and hence ε = b – a <
Bn  – An ; this contradicts Bn  – An  < ε.  The case for a > b is
symmetric.  This means that modern limit theory includes in a sense
the two-case proof by contradiction involved in the Greek method of
exhaustion.  On the other hand, modern limit theory puts this part of
the argument in the same place each time, so that we do not
constantly need to repeat it.  The desire to avoid this repetition is not
new:  speaking of his own theory of limits (which was inadequate by
our standards), Newton said, “These Lemmas are premised to avoid
the tediousness of deducing involved demonstrations ad absurdum,
according to the method of the ancient geometers.”   (See Struik
(1969), p. 299.)  Evidently, Newton and his contemporaries felt that
proofs by the method of exhaustion were exhausting the mathe-
maticians as well as the areas.

A similar transformation can be made with another example,
Euclid XII, Proposition 2 (from Heath (1956)).  Euclid begins the book
with

PROPOSITION 1.

Similar polygons inscribed in circles are to one another as the
squares on their diameters.

He then uses this to prove

PROPOSITION 2.

Circles are to one another as the squares on the diameters.

Let ABCD, EFGH be circles, and BD, FH their diameters;
I say that, as the circle ABCD is to the circle EFGH, so is the
square on BD to the square on FH.
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For, if the square on BD is not to the square on FH as the circle
ABCE is to the circle EFGH,
then, as the square on BD is to the square on FH, so will the circle
ABCD be either to some less area than the circle EFGH, or to a
greater.

First, let it be in that ratio to a less area S.
Let the square EFGH be inscribed in the circle EFGH; then the

inscribed square is greater than half of the circle EFGH, inasmuch
as, if through the points E,  F,  G,  H we draw tangents to the
circle, the square EFGH is half the square circumscribed about
the circle, and the circle is less than the circumscribed square;
hence the inscribed square EFGH is greater than the half of the
circle EFGH.

Let the circumferences EF, FG, GH, HE be bisected at the
points K, L, M, N,
and let EK, KF, FL, LG, GM, MH, HN, NE be joined;
therefore each of the triangles EKF, FLG, GMH, HNE is also
greater than the half of the segment of the circle about it,
inasmuch as, if through the points K,  L,  M,  N  we draw tangents
to the circle and complete the parallelograms on the straight lines
EF, FG, GH, HE, each of the triangles EKF, FLG, GMH, HNE will
be half of the parallelogram about it,
while the segment about it is less than the parallelogram;
hence each of the triangles EKF, FLG, GMH, HNE is greater than
the half of the segment of the circle about it.

Thus, by bisecting the remaining circumferences and joining
straight lines, and by doing this continually, we shall leave some
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segments of the circle which will be less than the excess by which
the circle EFGH exceeds the area S.

For it was proved in the first theorem of the tenth book that, if
two unequal magnitudes be set out, and if from the greater there
be subtracted a magnitude greater than the half, and from that
which is left a greater than the half, and if this be done continually,
there will be left some magnitude which will be less than the lesser
magnitude set out.

Let segments be left such as described, and let the segments of
the circle EFGH on EK, KF, FL, LG, GM, MH, HN, NE be less than
the excess by which the circle EFGH exceeds the area S.

Therefore the remainder, the polygon EKFLGMHN, is greater
than the area S.

Let there be inscribed, also, in the circle ABCD the polygon
AOBPCQDR similar to the polygon EKFLGMHN;
therefore, as the square on BD is to the square on FH, so is the
polygon AOBPCQDR to the polygon EKFLGMHN. [XII. 1]

But, as the square on BD is to the square on FH, so also is the
circle ABCD to the area S;
therefore also, as the circle ABCD is to the area S, so is the
polygon AOBPCQDR to the polygon EKFLGMHN; [V. 11]

But the circle ABCD is greater than the polygon inscribed in it;
therefore, the area S is also greater than the polygon
EKFLGMHN.

But it is also less:
which is impossible.

Therefore, as the square on BD is to the square on FH, so is not
the circle ABCD any area less than the circle EFGH.

Similarly we can prove that neither is the circle EFGH to any
area less than the circle ABCD as the square on FH is to the
square on BD.

I say next that neither is the circle ABCD to any area greater
than the circle EFGH as the square on BD is to the square on FH.

For, if possible, let it be in that ratio to a greater area S.
Therefore, inversely, as the square on FH is to the square on

DB, so is the area S to the circle ABCD.
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But, as the area S is to the circle ABCD, so is the circle EFGH
to some area less than the circle ABCD;
therefore also, as the square on FH is to the square on BD, so is
the circle EFGH to some area less than the circle ABCD:

[V. 11]
which was proved impossible.

Therefore, as the square on BD is to the square on FH, so is not
the circle ABCD to any area greater than the circle EFGH.

And it was proved that neither is it in that ratio to any area less
than the circle EFGH;
therefore, as the square on BD is to the square on FH, so is the
circle ABCD to the circle EFGH.

Therefore etc.
Q. E. D.

LEMMA.

I say that, the area S being greater than the circle EFGH, as
the area S is to the circle ABCD, so is the circle EFGH to some
area less than the circle ABCD.

For let it be contrived that, as the area S is to the circle ABCD,
so is the circle EFGH to the area T.

I say that the area T is less than the circle ABCD.
For since, as the area S is to the circle ABCD, so is the circle

EFGH to the area T,
therefore, alternately, as the area S is to the circle EFGH, so is
the circle ABCD to the area T. [V. 16]

But the area S is greater than the circle EFGH;
therefore the circle ABCD is also greater than the area T.

Hence, as the area S is to the circle ABCD, so is the circle
EFGH to some area less than the circle ABCD. Q. E. D.

To put this argument into modern algebraic notation, let the given
circles have areas a and b respectively, and let the corresponding
ratio of the squares of their diameters be k.  Let the areas of the
polygons inscribed in the circle with area a have areas a1 , a2 , ….
Let the polygons inscribed in the other circle have areas b1 , b2 , ….
We have

0 < a1  < a2  < … an  < … < a,
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and

0 < b1  < b2  < … bn  < … < b.

Furthermore, for each n, we have

k = 
an
bn

 .

In addition, we have for each n that

(a – an+1 ) < 12(a – an) , (b – bn+1)  < 12(b – bn) .

We want to prove

k = 
a
b .

Now if k ≠ 
a
b , then k = 

a
S , where S < b or S > b.

I.  Suppose S < b.  Choose N so that

b – bN  < b – S.

Then

S < bN .

But

S = 
a
k  > 

aN
k   = bN ,

a contradiction.

II.  Suppose S > b.  This is similar to case I with a and b reversed.

It follows that

k = 
a
b .
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REMARK.  This proof depends on our being able to find an N so that
a – aN  < a – S or b – bN  < b – S.  This, in turn, depends on

(a – an+1 ) < 12(a – an) , (b – bn+1)  < 12(b – bn) .

From this we get easily

(a – an+1 ) <  
1
2

n
(a – a1) , (b – bn+1)  <  

1
2

n
(b – b1) .

In other words, (a – an ) and (b – bn ) can be made as small as we
please.  Another way to say this is

(1)  For each ε > 0, there is an N such that for all n ≥ N,

    a an- < ε.
(2)  For each ε > 0, there is an N such that for all n ≥ N,

    b bn- < ε.

SHORTER PROOF.  Let ε > 0 be given.  Choose N so that for all
n ≥ N,

    b bn-  < 
    

1
k

ε.

Then

    kb an- =     kb kbn- =     k b bn- < ε.

Hence, kb is the limit of the sequence an , and since a sequence can
have only one limit, kb = a.

Note that this gives us a proof that the limit of kbn  is k times the
limit of bn .
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