What is a superrigid subgroup?

Dave Witte

Department of Mathematics
Oklahoma State University
Stillwater, OK 74078

e-mail: dwitte@math.okstate.edu

http://www.math.okstate.edu/~dwitte

Abstract

It is not difficult to see that every group homomorphism from \mathbb{Z}^k to \mathbb{R}^n extends to a homomorphism from \mathbb{R}^k to \mathbb{R}^n. (Essentially, this is the fact that a linear transformation can be defined to have any desired action on a basis.) We will see other examples of discrete subgroups Γ of connected groups G, such that the homomorphisms defined on Γ can (“almost”) be extended to homomorphisms defined on all of G.
What is a superrigid subgroup?

(1. Combinatorial superrigidity)

2. Group-theoretic superrigidity

(3. The analogy)

4. Superrigid subgroups
(1. Combinatorial superrigidity)

Eg. Two joined triangles

This is not rigid.

I.e., it can be deformed (a “hinge”).
Eg. Tetrahedron

This is **rigid** (cannot be deformed).
Eg. Add a small tetrahedron

This is rigid.
However, it is not superrigid: if it is taken apart, it can be reassembled incorrectly.
A tetrahedron is superrigid: the combinatorial description determines the geometric structure.

Combinatorial superrigidity:

Make a copy of the object,
according to the combinatorial rules.
The copy is the exact same shape as the original.

This talk: analogue in group theory
2. Group-theoretic superrigidity

Group homomorphism $\phi: \mathbb{Z} \to \mathbb{R}^d$

(i.e., $\phi(m + n) = \phi(m) + \phi(n)$)

$\Rightarrow \phi$ extends to a homomorphism $\hat{\phi}: \mathbb{R} \to \mathbb{R}^d$.

Namely, define $\hat{\phi}(x) = x \cdot \phi(1)$.

Check:

• $\hat{\phi}(n) = \phi(n)$

• $\hat{\phi}(x + y) = \hat{\phi}(x) + \hat{\phi}(y)$

• $\hat{\phi}$ is continuous

(only allow continuous homomorphisms)
Group homomorphism $\phi: \mathbb{Z}^k \to \mathbb{R}^d$

$\Rightarrow \phi$ extends to a homomorphism $\hat{\phi}: \mathbb{R}^k \to \mathbb{R}^d$.

Proof. Use standard basis $\{e_1, \ldots, e_k\}$ of \mathbb{R}^k.

“A linear transformation can have any desired effect on a basis.”

Linear transformation

\Rightarrow homomorphism of additive groups

Group Representation Theory:
study homomorphisms into *Matrix Groups*.

$\text{GL}_d(\mathbb{C}) = d \times d$ matrices over \mathbb{C}

with nonzero determinant

This is a group under multiplication.

$$\mathbb{R}^d \cong \begin{pmatrix} 1 & 0 & 0 & \mathbb{R} \\ 0 & 1 & 0 & \mathbb{R} \\ 0 & 0 & 1 & \mathbb{R} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Group homomorphism $\phi: \mathbb{Z} \to \text{GL}_d(\mathbb{R})$
(i.e., $\phi(m + n) = \phi(m) \cdot \phi(n)$)

$\not\Rightarrow$ extends to homo $\hat{\phi}: \mathbb{R} \to \text{GL}_d(\mathbb{R})$.

(Only allow continuous homos.)

Proof by contradiction.
Suppose \exists homo $\hat{\phi}: \mathbb{R} \to \text{GL}_d(\mathbb{R})$ with $\hat{\phi}(n) = \phi(n)$ for all $n \in \mathbb{Z}$.

$\hat{\phi}(0) = I \Rightarrow \det(\hat{\phi}(0)) = 1 > 0$

\mathbb{R} connected

$\Rightarrow \hat{\phi}(\mathbb{R})$ connected

$\Rightarrow \det(\hat{\phi}(\mathbb{R}))$ connected

$\Rightarrow \det(\hat{\phi}(\mathbb{R})) > 0$

$\Rightarrow \det(\phi(1)) > 0$

Maybe $\det(\phi(1)) < 0$. \hspace{1cm} \rightarrow \leftarrow

(Any $A \in \text{GL}_d(\mathbb{R})$, let $\phi(n) = A^n$.)
Group homo $\phi: \mathbb{Z} \to \text{GL}_d(\mathbb{R})$

(i.e., $\phi(m + n) = \phi(m) \cdot \phi(n)$)

$\not\Rightarrow$ extends to homo $\hat{\phi}: \mathbb{R} \to \text{GL}_d(\mathbb{R})$.

Because: maybe $\det(\phi(1)) < 0$.

However, $\det(\phi(\text{even})) > 0$.

\[
\begin{align*}
\det(\phi(2m)) & = \det(\phi(m + m)) \\
& = \det(\phi(m) \cdot \phi(m)) \\
& = \left(\det(\phi(m))\right)^2 \\
& > 0.
\end{align*}
\]
May have to ignore odd numbers: restrict attention to even numbers.

Analogously, may need to restrict to multiples of 3 (or 4 or 5 or \ldots)

Restrict attention to multiples of N

\{multiples of N\} is a subgroup of \mathbb{Z}

“ Restrict attention to a finite-index subgroup”
Prop. Group homomorphism $\phi : \mathbb{Z}^k \to \text{GL}_d(\mathbb{R})$

$\Rightarrow \phi$ “almost” extends to homo $\hat{\phi} : \mathbb{R}^k \to \text{GL}_d(\mathbb{R})$
such that $\hat{\phi}(\mathbb{R}^k) \subset \overline{\phi(\mathbb{Z}^k)}$. (“Zariski closure”)

This means \mathbb{Z}^k is superrigid in \mathbb{R}^k.

“Homomorphisms defined on \mathbb{Z}^k almost extend to be defined on \mathbb{R}^k”

Generalize to nonabelian groups.
Lagrange interpolation:

there is a polynomial curve

\[y = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \]

through any \(n + 1 \) points.
Idea: Zar closure is like *convex hull*.

Image of ϕ controls image of $\hat{\phi}$.

Eg. If all matrices in $\phi(\mathbb{Z})$ commute, then all matrices in $\hat{\phi}(\mathbb{R})$ commute.

Eg. If all matrices in $\phi(\mathbb{Z})$ fix a vector v, then all matrices in $\hat{\phi}(\mathbb{R})$ fix v.
(3. The analogy)

Combinatorial superrigidity:

Make a copy of the object, according to the combinatorial rules.

The copy is the exact same shape as the original.

Maybe not exactly the same object:
- may be rotated from the original position;
- may be translated from original position.

These are trivial modifications: rotations and translations are symmetries of the whole universe (Euclidean space \mathbb{R}^3).
Combinatorial superrigidity:

Make a copy of the object, according to the combinatorial rules.

The same result can be obtained by keeping the original object and moving the whole universe to a new position.

“If the object can be moved somewhere, then the whole universe can be moved there.”

Let H be a subgroup of a group G.

Superrigid means:

homomorphism $\phi: H \to \text{GL}_d(\mathbb{R})$ extends to homomorphism $\hat{\phi}: G \to \text{GL}_d(\mathbb{R})$

Group-theoretic superrigidity:

Make a copy of H as a group of matrices.

The same copy of H can be obtained by moving all of G into a group of matrices.
4. Superrigid subgroups

Prop. Group homomorphism \(\phi: \mathbb{Z}^k \to \text{GL}_d(\mathbb{R}) \)

\(\Rightarrow \) \(\phi \) “almost” extends to homo \(\hat{\phi}: \mathbb{R}^k \to \text{GL}_d(\mathbb{R}) \)

such that \(\hat{\phi}(\mathbb{R}^k) \subset \overline{\phi(\mathbb{Z}^k)}. \) (“Zariski closure”)

This means \(\mathbb{Z}^k \) is superrigid in \(\mathbb{R}^k \).

Generalize to nonabelian groups.

\(\mathbb{Z}^k \) is a lattice in \(\mathbb{R}^k \). I.e.,

- \(\mathbb{R}^k \) is a (simply) connected grp ("Lie group")
- \(\mathbb{Z}^k \) is a discrete subgroup
- all of \(\mathbb{R}^k \) is within a bounded distance of \(\mathbb{Z}^k \)

\[\exists C, \ \forall x \in \mathbb{R}^k, \ \exists m \in \mathbb{Z}^k, \ \ d(x, m) < C. \]

\(H \) is a lattice in \(G \)
All of \mathbb{R}^k is within $\sqrt{k}/2$ of \mathbb{Z}^k
Let us consider solvable groups.

A connected subgroup G of $\text{GL}_d(\mathbb{C})$ is solvable if it is upper triangular

$$G \subset \begin{pmatrix} \mathbb{C}^\times & \mathbb{C} & \mathbb{C} \\ 0 & \mathbb{C}^\times & \mathbb{C} \\ 0 & 0 & \mathbb{C}^\times \end{pmatrix}$$

(or is after a change of basis).

Eg. All abelian groups are solvable.

Proof. Every matrix can be triangularized over \mathbb{C}. Pairwise commuting matrices can be simultaneously triangularized.
Prop. H superrigid in G

$$\Rightarrow \overline{H} = \overline{G} \pmod{Z(G)}.$$

Proof. The inclusion $H \hookrightarrow \text{GL}_d(\mathbb{R})$

must extend to $G \hookrightarrow \text{GL}_d(\mathbb{R})$

with $G \subset \overline{H}$.

Converse:

Thm (Witte). *A lattice H in a solvable grp G is superrigid iff* $\overline{H} = \overline{G} \pmod{Z(G)}$.
Examples of lattices.

\[G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & 1 & \mathbb{R} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[H = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 0 & 1 & \mathbb{Z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[G = \begin{pmatrix} \mathbb{R}^+ & 0 & 0 \\ 0 & \mathbb{R}^+ & 0 \\ 0 & 0 & \mathbb{R}^+ \end{pmatrix} \]

\[H = \begin{pmatrix} 2\mathbb{Z} & 0 & 0 \\ 0 & 2\mathbb{Z} & 0 \\ 0 & 0 & 2\mathbb{Z} \end{pmatrix} \]
\[G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{C} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \bar{G} = G \]

\[H = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} + \mathbb{Z} i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \bar{H} = G \]

\[G' = \begin{pmatrix} 1 & t & \mathbb{C} \\ 0 & 1 & 0 \\ 0 & 0 & e^{2\pi i t} \end{pmatrix} \]

\[\bar{G}' = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{C} \\ 0 & 1 & 0 \\ 0 & 0 & \mathbb{T} \end{pmatrix} \]

\[H' = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} + \mathbb{Z} i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = H \]
H is a lattice in both G and G'.

$$
\overline{H} = G \neq \overline{G}' \quad \text{so} \quad \overline{H} \neq \overline{G}'
$$

H is \textit{not} superrigid in G'.

E.g., the identity map $\phi: H \rightarrow H$ does not extend to homo $\hat{\phi}: G' \rightarrow \overline{H}$.

\textit{Proof.} Note that $\overline{H} = G$ is abelian but G' is not abelian.

A nonabelian group cannot be embedded in an abelian one.
\[H \neq G' \]: some of the rotations associated to \(G' \) do not come from rotations associated to \(H \)

\[
\text{rot} \left(\begin{array}{cc} \alpha & \ast \\ 0 & \beta \end{array} \right) = \left(\begin{array}{cc} \frac{\alpha}{|\alpha|} & 0 \\ 0 & \frac{\beta}{|\beta|} \end{array} \right)
\]

